Skip to content
Snippets Groups Projects
Commit 7f394000 authored by Dominic Noltekuhlmann's avatar Dominic Noltekuhlmann
Browse files

finished version

parent 0e514f04
No related branches found
No related tags found
No related merge requests found
No preview for this file type
......@@ -111,9 +111,9 @@ Paderborn University}
%%%pythonmarker
% Remove commenting:
%\renewcommand*{\todo}[1]{}
\renewcommand*{\todo}[1]{}
\renewcommand*{\domse}[1]{}
%\renewcommand*{\eli}[1]{}
\renewcommand*{\eli}[1]{}
\begin{document}
......@@ -239,7 +239,7 @@ Paderborn University}
\item subject to $\sum_{i=1}^{n} c_i \cdot x_i \leq C_{max}$ (constraint)
\end{itemize}
\end{itemize}
\item Additionally, we can define the excess cost $e(x):=\sum_{i=1}^{n} c_i \cdot x_i - C_{max}$ used for calculations later.
\item Additionally, we can define the excess cost $e(x):= \left(\sum_{i=1}^{n} c_i \cdot x_i\right) - C_{max}$ used for calculations later.
\end{itemize}
\end{frame}
......@@ -328,7 +328,7 @@ Paderborn University}
\item Three methods:
\begin{itemize}
\item \textbf{Extinctive Penalties}: Brutal penalties.
\item \textbf{Binary Penalties}: Either apply or apply no penalty.
\item \textbf{Binary Penalties}: Either apply a penalty or don't apply a penalty.
\end{itemize}
\end{itemize}
\end{frame}
......@@ -341,7 +341,7 @@ Paderborn University}
\item Three methods:
\begin{itemize}
\item \textbf{Extinctive Penalties}: Brutal penalties.
\item \textbf{Binary Penalties}: Either apply or apply no penalty.
\item \textbf{Binary Penalties}: Either apply a penalty or don't apply a penalty.
\item \textbf{Distance Based Penalties}: Penalty reflects difficulty of being feasible. \domse{weiß noch nicht ganz wie ich das im unterschied zu death penalty erklären soll}
\end{itemize}
\end{itemize}
......@@ -355,7 +355,7 @@ Paderborn University}
\item Three methods:
\begin{itemize}
\item \textbf{Extinctive Penalties}: Brutal penalties.
\item \textbf{Binary Penalties}: Either apply or apply no penalty.
\item \textbf{Binary Penalties}: Either apply a penalty or don't apply a penalty.
\item \textbf{Distance Based Penalties}: Penalty reflects difficulty of being feasible. \domse{weiß noch nicht ganz wie ich das im unterschied zu death penalty erklären soll}
\end{itemize}
\item \textbf{Advantages:} Mostly easy and simple to use tool.\domse{weil dafür gesorgt wird das unmögliche lösungen eliminiert/stark bestraft werden}
......@@ -370,7 +370,7 @@ Paderborn University}
\item Three methods:
\begin{itemize}
\item \textbf{Extinctive Penalties}: Brutal penalties.
\item \textbf{Binary Penalties}: Either apply or apply no penalty.
\item \textbf{Binary Penalties}: Either apply a penalty or don't apply a penalty.
\item \textbf{Distance Based Penalties}: Penalty reflects difficulty of being feasible. \domse{weiß noch nicht ganz wie ich das im unterschied zu death penalty erklären soll}
\end{itemize}
\item \textbf{Advantages:} Mostly easy and simple to use tool.\domse{weil dafür gesorgt wird das unmögliche lösungen eliminiert/stark bestraft werden}
......@@ -623,7 +623,7 @@ Paderborn University}
\includegraphics[width=0.3\textwidth]{../MALEO-report/figures/repair_mapping.pdf}
\begin{itemize}
\item Uses two population sets $P_s$ and $P_r$, for evaluation and repairing.
\item Infeasible solutions are repaired by sampling line segments to feasible points. \domse{taken from a different example but a similar repair process can be observed}
\item Best feasible solution is $z$.
\end{itemize}
\end{frame}
......@@ -638,112 +638,11 @@ Paderborn University}
\begin{itemize}
\item Problem dependent and sometimes complex. \domse{für jedes problem eine spezifische repair function is nötig. in manchen fälle kann das definieren einer solchen funktion genauso schwer sein wie das lösen des problems selbst}
\item Repair functions can be computationally expensive.
\item Repair functions can introduce noise.
\end{itemize}
\end{itemize}
\end{frame}
\subsection{Decoder Functions}
\begin{frame}
\frametitle{Decoder Functions}
\begin{itemize}
\item Maps genotype to phenotype forcing feasibility.
\item Requirements:
\begin{itemize}
\item Every genotype solution must map to a feasible solution.
\item Every feasible solution must have at least one genotype equivalent.
\item Every feasible solution must have the same number of genotype solutions.
\end{itemize}
\item Additional optional requirements:
\begin{itemize}
\item The mapping should be computationally fast.
\item Supports locality feature. \domse{kleine veränderung im genotype region führt zu kleinen änderungen in der möglichen lösung}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Example: Knapsack Problem (Decoder Function)}
\begin{itemize}
\item Idea: Use a mapping to directly map form the genotype to the feasible solution space $F$.
\item Approach:
\begin{itemize}
\item Step 1. Set $x$ to include no elements. \domse{all $0$ in $x$}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Example: Knapsack Problem (Decoder Function)}
\begin{itemize}
\item Idea: Use a mapping to directly map form the genotype to the feasible solution space $F$.
\item Approach:
\begin{itemize}
\item Step 1. Set $x$ to include no elements. \domse{all $0$ in $x$}
\item Step 2. Randomly flip a bit from $0$ to $1$.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Example: Knapsack Problem (Decoder Function)}
\begin{itemize}
\item Idea: Use a mapping to directly map form the genotype to the feasible solution space $F$.
\item Approach:
\begin{itemize}
\item Step 1. Set $x$ to include no elements. \domse{all $0$ in $x$}
\item Step 2. Randomly flip a bit from $0$ to $1$.
\item Step 3. Check whether the last flipped bit causes $e(x) > 0$.
\begin{itemize}
\item If so: return to the previous version of $x$ and terminate.
\item If not: repeat from step 2.
\end{itemize}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Example: Knapsack Problem (Decoder Function)}
\begin{itemize}
\item Idea: Use a mapping to directly map form the genotype to the feasible solution space $F$.
\item Approach:
\begin{itemize}
\item Step 1. Set $x$ to include no elements. \domse{all $0$ in $x$}
\item Step 2. Randomly flip a bit from $0$ to $1$.
\item Step 3. Check whether the last flipped bit causes $e(x) > 0$.
\begin{itemize}
\item If so: return to the previous version of $x$ and terminate.
\item If not: repeat from step 2.
\end{itemize}
\end{itemize}
\item Fitness of binary solution $x$: $f_D(x) = f(x)$
\end{itemize}
\end{frame}
\begin{frame}{Example: Knapsack Problem (Decoder Function)}
\centering
\includegraphics[width=0.7\textwidth]{../MALEO-report/figures/decoder_mapping.pdf}
\begin{itemize}
\item Mapping $T$ between the genotype solution space $(b)$ and the feasible solution space $(a)$. \domse{$d$ is equal to the binary solution $x$ and $f(x)$ is equal to $s$. The feasible areas of the solution space are shaded}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Evaluation Decoder Function}
\begin{itemize}
\item \textbf{Advantages:} Relative simple approach of using evolutionary algorithms. \domse{idee ist einfach (zu verstehen und zu implementieren), es wird lediglich ein mapping von genotype zu phenotype benötig}
\item \textbf{Disadvantages:} Causes a lot of redundancy, leading to the loss of potential feasible solutions. \domse{in einer one-to-many mapping kann es passieren durch eine schlechte definition des mappings das unterschiedliche genotype lösungen zu einer phenotype lösung gemapped werden, wodurch nicht mehr alle abbildbar sind}
\end{itemize}
\end{frame}
% \begin{frame}{Example: Knapsack Problem (2)}
% \begin{itemize}
% \item The GENOCOP III by Michalewicz’s: \eli{trotzdem möglich das für das knapsack problem etwas abgeändert zu nutzen? oder lieber doch ein ganz anderes bild nutzen?}
......@@ -918,7 +817,8 @@ Paderborn University}
\begin{frame}
\frametitle{Binary Penalties (Static Penalty Function)}
\begin{itemize}
\item General Approach: Replace the excess cost function (distance metric $d^K(x)$) with a binary function $\delta$. \item Form (for Knapsack problem):
\item General Approach: Replace the excess cost function with a binary function $\delta$.
\item Form (for Knapsack problem):
\begin{displaymath}
f_P(x) = f(x) - w \cdot \delta
\text{\qquad where }
......@@ -936,7 +836,7 @@ Paderborn University}
\begin{frame}
\frametitle{Distance Based Penalties (Static Penalty Function)}
\begin{itemize}
\item General Approach: Focus on distance to feasibility, using the excess cost function (distance metric $d^K(\boldsymbol{x})$).
\item General Approach: Focus on distance to feasibility, using the excess cost function.
\item Form (for Knapsack problem):
\begin{displaymath}
f_P(x) = f(x) - w \cdot \max(0, e(x))
......@@ -947,6 +847,106 @@ Paderborn University}
\end{frame}
\subsection{Decoder Functions}
\begin{frame}
\frametitle{Decoder Functions}
\begin{itemize}
\item Maps genotype to phenotype forcing feasibility.
\item Requirements:
\begin{itemize}
\item Every genotype solution must map to a feasible solution.
\item Every feasible solution must have at least one genotype equivalent.
\item Every feasible solution must have the same number of genotype solutions.
\end{itemize}
\item Additional optional requirements:
\begin{itemize}
\item The mapping should be computationally fast.
\item Supports locality feature. \domse{kleine veränderung im genotype region führt zu kleinen änderungen in der möglichen lösung}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Example: Knapsack Problem (Decoder Function)}
\begin{itemize}
\item Idea: Use a mapping to directly map form the genotype to the feasible solution space $F$.
\item Approach:
\begin{itemize}
\item Step 1. Set $x$ to include no elements. \domse{all $0$ in $x$}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Example: Knapsack Problem (Decoder Function)}
\begin{itemize}
\item Idea: Use a mapping to directly map form the genotype to the feasible solution space $F$.
\item Approach:
\begin{itemize}
\item Step 1. Set $x$ to include no elements. \domse{all $0$ in $x$}
\item Step 2. Randomly flip a bit from $0$ to $1$.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Example: Knapsack Problem (Decoder Function)}
\begin{itemize}
\item Idea: Use a mapping to directly map form the genotype to the feasible solution space $F$.
\item Approach:
\begin{itemize}
\item Step 1. Set $x$ to include no elements. \domse{all $0$ in $x$}
\item Step 2. Randomly flip a bit from $0$ to $1$.
\item Step 3. Check whether the last flipped bit causes $e(x) > 0$.
\begin{itemize}
\item If so: Return to the previous version of $x$ and terminate.
\item Else: Repeat from step 2.
\end{itemize}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Example: Knapsack Problem (Decoder Function)}
\begin{itemize}
\item Idea: Use a mapping to directly map form the genotype to the feasible solution space $F$.
\item Approach:
\begin{itemize}
\item Step 1. Set $x$ to include no elements. \domse{all $0$ in $x$}
\item Step 2. Randomly flip a bit from $0$ to $1$.
\item Step 3. Check whether the last flipped bit causes $e(x) > 0$.
\begin{itemize}
\item If so: return to the previous version of $x$ and terminate.
\item If not: repeat from step 2.
\end{itemize}
\end{itemize}
\item Fitness of binary solution $x$: $f_D(x) = f(x)$
\end{itemize}
\end{frame}
\begin{frame}{Example: Knapsack Problem (Decoder Function)}
\centering
\includegraphics[width=0.7\textwidth]{../MALEO-report/figures/decoder_mapping.pdf}
\begin{itemize}
\item Mapping $T$ between the genotype solution space $(b)$ and the feasible solution space $(a)$. \domse{$d$ is equal to the binary solution $x$ and $f(x)$ is equal to $s$. The feasible areas of the solution space are shaded}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Evaluation Decoder Function}
\begin{itemize}
\item \textbf{Advantages:} Relative simple approach of using evolutionary algorithms. \domse{idee ist einfach (zu verstehen und zu implementieren), es wird lediglich ein mapping von genotype zu phenotype benötig}
\item \textbf{Disadvantages:} Causes a lot of redundancy, leading to the loss of potential feasible solutions. \domse{in einer one-to-many mapping kann es passieren durch eine schlechte definition des mappings das unterschiedliche genotype lösungen zu einer phenotype lösung gemapped werden, wodurch nicht mehr alle abbildbar sind}
\end{itemize}
\end{frame}
%\begin{frame}
% \frametitle{Evaluation of Penalty Functions}
% \begin{itemize}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment