Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
ExplainGNNWithHighLevelConcepts
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ajay Umakanth
ExplainGNNWithHighLevelConcepts
Commits
15696cd7
There was an error fetching the commit references. Please try again later.
Commit
15696cd7
authored
6 months ago
by
AjUm-HEIDI
Browse files
Options
Downloads
Patches
Plain Diff
Update the csv order
parent
f6144c50
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
ConceptLearner/DiscriminativeExplainer.py
+4
-23
4 additions, 23 deletions
ConceptLearner/DiscriminativeExplainer.py
text_based_datasets_experiment.py
+24
-8
24 additions, 8 deletions
text_based_datasets_experiment.py
with
28 additions
and
31 deletions
ConceptLearner/DiscriminativeExplainer.py
+
4
−
23
View file @
15696cd7
...
...
@@ -21,24 +21,6 @@ from typing import Final
from
ontolearn.abstracts
import
AbstractFitness
from
ontolearn.ea_utils
import
Tree
class
LinearPressureFitness
(
AbstractFitness
):
"""
Linear parametric parsimony pressure.
"""
__slots__
=
'
gain
'
,
'
penalty
'
name
:
Final
=
'
Linear_Pressure_Fitness
'
def
__init__
(
self
,
gain
:
float
=
2048.0
,
penalty
:
float
=
1.0
):
self
.
gain
=
gain
self
.
penalty
=
penalty
def
apply
(
self
,
individual
:
Tree
):
quality
=
individual
.
quality
.
values
[
0
]
fitness
=
self
.
gain
*
quality
-
self
.
penalty
*
len
(
individual
)
# print(self.gain, quality, self.gain*quality, len(individual))
individual
.
fitness
.
values
=
(
round
(
fitness
,
5
),)
class
DiscriminativeExplainer
:
"""
An abstract class which represent an explainer. An explainer should be able to use a label to generate a
...
...
@@ -86,7 +68,7 @@ class DiscriminativeExplainer:
return
OWLObjectMinCardinality
(
ce
.
get_cardinality
(),
ce
.
get_property
(),
ce2
)
return
ce
def
__init__
(
self
,
gnn
,
data
:
Union
[
HeteroData
,
Data
],
namespace
=
"
http://example.org/
"
,
owl_graph_path
=
"
./owlGraphs/example.owl
"
,
generate_new_owl_file
:
bool
=
False
,
create_nominals
:
bool
=
False
,
add_edge_counts
:
bool
=
False
,
create_data_properties_as_boolean
:
bool
=
False
,
full_edge_name
:
bool
=
False
,
ignore_nodes
:
bool
=
False
,
high_level_concepts
:
dict
=
None
,
create_high_level_concepts_as_boolean
:
bool
=
False
,)
->
None
:
def
__init__
(
self
,
gnn
,
data
:
Union
[
HeteroData
,
Data
],
namespace
=
"
http://example.org/
"
,
owl_graph_path
=
"
./owlGraphs/example.owl
"
,
generate_new_owl_file
:
bool
=
False
,
create_nominals
:
bool
=
False
,
add_edge_counts
:
bool
=
False
,
create_data_properties_as_boolean
:
bool
=
False
,
full_edge_name
:
bool
=
False
,
ignore_nodes
:
bool
=
False
,
high_level_concepts
:
dict
=
None
,
create_high_level_concepts_as_boolean
:
bool
=
False
,
add_false_values
=
False
)
->
None
:
"""
Initializes the explainer based on the given GNN and the Dataset. After the initialization the object should
be able to produce explanations of single labels.
...
...
@@ -115,7 +97,7 @@ class DiscriminativeExplainer:
if
generate_new_owl_file
and
os
.
path
.
isfile
(
self
.
owl_graph_path
):
os
.
remove
(
self
.
owl_graph_path
)
if
not
os
.
path
.
isfile
(
self
.
owl_graph_path
):
self
.
owlGraph
=
convert_to_owl
(
data
=
self
.
data
,
namespace
=
self
.
namespace
,
owlGraphPath
=
self
.
owl_graph_path
,
high_level_concepts
=
self
.
high_level_concepts
,
create_nominals
=
create_nominals
,
add_edge_counts
=
add_edge_counts
,
create_data_properties_as_boolean
=
create_data_properties_as_boolean
,
full_edge_name
=
full_edge_name
,
ignore_nodes
=
self
.
ignore_nodes
,
create_high_level_concepts_as_boolean
=
create_high_level_concepts_as_boolean
)
self
.
owlGraph
=
convert_to_owl
(
data
=
self
.
data
,
namespace
=
self
.
namespace
,
owlGraphPath
=
self
.
owl_graph_path
,
high_level_concepts
=
self
.
high_level_concepts
,
create_nominals
=
create_nominals
,
add_edge_counts
=
add_edge_counts
,
create_data_properties_as_boolean
=
create_data_properties_as_boolean
,
full_edge_name
=
full_edge_name
,
ignore_nodes
=
self
.
ignore_nodes
,
create_high_level_concepts_as_boolean
=
create_high_level_concepts_as_boolean
,
add_false_values
=
add_false_values
)
self
.
owlGraph
.
buildGraph
()
self
.
knowledge_base
=
KnowledgeBase
(
path
=
self
.
owl_graph_path
)
...
...
@@ -126,8 +108,7 @@ class DiscriminativeExplainer:
debug
:
Optional
[
bool
]
=
False
,
max_runtime
:
Optional
[
int
]
=
60
,
num_generations
:
Optional
[
int
]
=
600
,
quality_func
:
Optional
[
AbstractScorer
]
=
None
,
length_penalty
:
Optional
[
int
]
=
1.0
)
->
OWLClassExpression
:
quality_func
:
Optional
[
AbstractScorer
]
=
None
)
->
OWLClassExpression
:
"""
Explains based on the GNN a given label. The explanation is in the form of a Class Expression.
Args:
...
...
@@ -144,7 +125,7 @@ class DiscriminativeExplainer:
if
quality_func
is
None
:
quality_func
=
F1
()
self
.
model
=
EvoLearner
(
knowledge_base
=
self
.
knowledge_base
,
use_data_properties
=
use_data_properties
,
max_runtime
=
max_runtime
,
num_generations
=
num_generations
,
quality_func
=
quality_func
,
population_size
=
1000
,
fitness_func
=
LinearPressureFitness
(
penalty
=
length_penalty
)
)
self
.
model
=
EvoLearner
(
knowledge_base
=
self
.
knowledge_base
,
use_data_properties
=
use_data_properties
,
max_runtime
=
max_runtime
,
num_generations
=
num_generations
,
quality_func
=
quality_func
,
population_size
=
1000
)
positive_examples
=
[]
negative_examples
=
[]
...
...
This diff is collapsed.
Click to expand it.
text_based_datasets_experiment.py
+
24
−
8
View file @
15696cd7
...
...
@@ -69,8 +69,17 @@ def append_to_csv_file(results, results_dir, dataset_key, num_groups, create_hig
filename
=
os
.
path
.
join
(
results_dir
,
f
"
{
dataset_key
}
_results.csv
"
)
with
open
(
filename
,
mode
=
'
a
'
,
newline
=
''
,
encoding
=
'
utf-8
'
)
as
csvfile
:
fieldnames
=
[
'
Dataset
'
,
'
Number of Groups
'
,
'
Create High Level Concepts As Boolean
'
,
'
Label Name
'
,
'
Hypothesis
'
,
'
Accuracy
'
,
'
Recall
'
,
'
Precision
'
,
'
F1 Score
'
,
'
Length
'
,
'
Explain Time
'
]
fieldnames
=
[
'
Dataset
'
,
'
Number of Groups
'
,
'
F1 Score
'
,
'
Length
'
,
'
Create High Level Concepts As Boolean
'
,
'
Label Name
'
,
'
Hypothesis
'
,
'
Accuracy
'
,
'
Recall
'
,
'
Precision
'
,
'
Explain Time
'
]
writer
=
csv
.
DictWriter
(
csvfile
,
fieldnames
=
fieldnames
)
if
write_header
:
...
...
@@ -80,14 +89,14 @@ def append_to_csv_file(results, results_dir, dataset_key, num_groups, create_hig
writer
.
writerow
({
'
Dataset
'
:
dataset_key
,
'
Number of Groups
'
:
num_groups
,
'
F1 Score
'
:
data
[
'
evaluation
'
].
get
(
'
F1
'
,
'
N/A
'
),
'
Length
'
:
data
[
'
length
'
],
'
Create High Level Concepts As Boolean
'
:
create_high_level_concepts_as_boolean
,
'
Label Name
'
:
data
[
'
label_name
'
],
'
Hypothesis
'
:
data
[
'
hypothesis
'
],
'
Accuracy
'
:
data
[
'
evaluation
'
].
get
(
'
Accuracy
'
,
'
N/A
'
),
'
Recall
'
:
data
[
'
evaluation
'
].
get
(
'
Recall
'
,
'
N/A
'
),
'
Precision
'
:
data
[
'
evaluation
'
].
get
(
'
Precision
'
,
'
N/A
'
),
'
F1 Score
'
:
data
[
'
evaluation
'
].
get
(
'
F1
'
,
'
N/A
'
),
'
Length
'
:
data
[
'
length
'
],
'
Explain Time
'
:
data
[
'
explain_time
'
]
})
...
...
@@ -157,9 +166,16 @@ def summarize_aggregated_results(aggregated_results, results_dir, dataset_name):
with
open
(
summary_filename
,
mode
=
"
w
"
,
newline
=
""
,
encoding
=
"
utf-8
"
)
as
csvfile
:
fieldnames
=
[
"
Label Name
"
,
"
Number of Groups
"
,
"
Best Hypothesis
"
,
"
Best F1 Score
"
,
"
Average F1 Score
"
,
"
Best Accuracy
"
,
"
Average Accuracy
"
,
"
Length at Best F1
"
,
"
Average Length
"
,
"
Average Explain Time
"
"
Label Name
"
,
"
Number of Groups
"
,
"
Best F1 Score
"
,
"
Average F1 Score
"
,
"
Best Accuracy
"
,
"
Average Accuracy
"
,
"
Length at Best F1
"
,
"
Average Length
"
,
"
Best Hypothesis
"
,
"
Average Explain Time
"
]
writer
=
csv
.
DictWriter
(
csvfile
,
fieldnames
=
fieldnames
)
writer
.
writeheader
()
...
...
@@ -173,13 +189,13 @@ def summarize_aggregated_results(aggregated_results, results_dir, dataset_name):
writer
.
writerow
({
"
Label Name
"
:
data
[
"
label_name
"
],
"
Number of Groups
"
:
num_groups
,
"
Best Hypothesis
"
:
data
[
"
best_hypothesis
"
],
"
Best F1 Score
"
:
data
[
"
best_F1
"
],
"
Average F1 Score
"
:
avg_f1
,
"
Best Accuracy
"
:
data
[
"
best_accuracy
"
],
"
Average Accuracy
"
:
avg_accuracy
,
"
Length at Best F1
"
:
data
[
"
length_at_best_f1
"
],
"
Average Length
"
:
avg_length
,
"
Best Hypothesis
"
:
data
[
"
best_hypothesis
"
],
"
Average Explain Time
"
:
avg_time
})
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment