
Project Group:
Vector Graphics on Modern Hardware

(VGMH)
Dorian Rudolph (dorian.rudolph@upb.de)

Prof. Dr. Sevag Gharibian

https://git.cs.uni-paderborn.de/vgmh/info

dorian.rudolph@upb.de
https://git.cs.uni-paderborn.de/vgmh/info


Canonical example

“Ghostscript tiger”
1 / 8



Motivation

Why are the quantum computing people doing a project group on vector graphics?

▶ None of the existing digital whiteboard apps are great.

▶ not supporting all platforms (Linux, Windows, Mac, Android, iOS, Web)
▶ bad performance
▶ missing “multiplayer”
▶ bad/missing PDF integration

Ok, so how can we build a better app?
▶ Need to render vector graphics
▶ Chrome uses Skia, so let’s try that...

2 / 8



Motivation

Why are the quantum computing people doing a project group on vector graphics?

▶ None of the existing digital whiteboard apps are great.

▶ not supporting all platforms (Linux, Windows, Mac, Android, iOS, Web)
▶ bad performance
▶ missing “multiplayer”
▶ bad/missing PDF integration

Ok, so how can we build a better app?
▶ Need to render vector graphics
▶ Chrome uses Skia, so let’s try that...

2 / 8



Motivation

Why are the quantum computing people doing a project group on vector graphics?
▶ None of the existing digital whiteboard apps are great.

▶ not supporting all platforms (Linux, Windows, Mac, Android, iOS, Web)
▶ bad performance
▶ missing “multiplayer”
▶ bad/missing PDF integration

Ok, so how can we build a better app?
▶ Need to render vector graphics
▶ Chrome uses Skia, so let’s try that...

2 / 8



Motivation

Why are the quantum computing people doing a project group on vector graphics?
▶ None of the existing digital whiteboard apps are great.

▶ not supporting all platforms (Linux, Windows, Mac, Android, iOS, Web)

▶ bad performance
▶ missing “multiplayer”
▶ bad/missing PDF integration

Ok, so how can we build a better app?
▶ Need to render vector graphics
▶ Chrome uses Skia, so let’s try that...

2 / 8



Motivation

Why are the quantum computing people doing a project group on vector graphics?
▶ None of the existing digital whiteboard apps are great.

▶ not supporting all platforms (Linux, Windows, Mac, Android, iOS, Web)
▶ bad performance

▶ missing “multiplayer”
▶ bad/missing PDF integration

Ok, so how can we build a better app?
▶ Need to render vector graphics
▶ Chrome uses Skia, so let’s try that...

2 / 8



Motivation

Why are the quantum computing people doing a project group on vector graphics?
▶ None of the existing digital whiteboard apps are great.

▶ not supporting all platforms (Linux, Windows, Mac, Android, iOS, Web)
▶ bad performance
▶ missing “multiplayer”

▶ bad/missing PDF integration
Ok, so how can we build a better app?
▶ Need to render vector graphics
▶ Chrome uses Skia, so let’s try that...

2 / 8



Motivation

Why are the quantum computing people doing a project group on vector graphics?
▶ None of the existing digital whiteboard apps are great.

▶ not supporting all platforms (Linux, Windows, Mac, Android, iOS, Web)
▶ bad performance
▶ missing “multiplayer”
▶ bad/missing PDF integration

Ok, so how can we build a better app?
▶ Need to render vector graphics
▶ Chrome uses Skia, so let’s try that...

2 / 8



Motivation

Why are the quantum computing people doing a project group on vector graphics?
▶ None of the existing digital whiteboard apps are great.

▶ not supporting all platforms (Linux, Windows, Mac, Android, iOS, Web)
▶ bad performance
▶ missing “multiplayer”
▶ bad/missing PDF integration

Ok, so how can we build a better app?

▶ Need to render vector graphics
▶ Chrome uses Skia, so let’s try that...

2 / 8



Motivation

Why are the quantum computing people doing a project group on vector graphics?
▶ None of the existing digital whiteboard apps are great.

▶ not supporting all platforms (Linux, Windows, Mac, Android, iOS, Web)
▶ bad performance
▶ missing “multiplayer”
▶ bad/missing PDF integration

Ok, so how can we build a better app?
▶ Need to render vector graphics

▶ Chrome uses Skia, so let’s try that...

2 / 8



Motivation

Why are the quantum computing people doing a project group on vector graphics?
▶ None of the existing digital whiteboard apps are great.

▶ not supporting all platforms (Linux, Windows, Mac, Android, iOS, Web)
▶ bad performance
▶ missing “multiplayer”
▶ bad/missing PDF integration

Ok, so how can we build a better app?
▶ Need to render vector graphics
▶ Chrome uses Skia, so let’s try that...

2 / 8



Stroke rendering is hard
https://issues.skia.org/issues/40043907: Filled paths of width less than 1px
defeat GPU anti-aliasing

Chrome vs. Inkscape:

3 / 8

https://issues.skia.org/issues/40043907


Stroke rendering is hard
https://issues.skia.org/issues/40043907: Filled paths of width less than 1px
defeat GPU anti-aliasing

Chrome vs. Inkscape:

3 / 8

https://issues.skia.org/issues/40043907


But why?

▶ Skia renders by tesselating
2D paths (turn into triangles)

▶ Use 3D pipeline for
rendering (rasterization of
triangles)

▶ MSAA for anti-aliasing
▶ Thin paths can “snake”

through the sample points
▶ Use “analytic anti-aliasing”

(compute exact overlap of
path with pixel)

▶ Difficult on GPU

Source: https://docs.rs/lyon_tessellation

4 / 8

https://docs.rs/lyon_tessellation


But why?

▶ Skia renders by tesselating
2D paths (turn into triangles)

▶ Use 3D pipeline for
rendering (rasterization of
triangles)

▶ MSAA for anti-aliasing
▶ Thin paths can “snake”

through the sample points
▶ Use “analytic anti-aliasing”

(compute exact overlap of
path with pixel)

▶ Difficult on GPU

Source: https://docs.rs/lyon_tessellation

4 / 8

https://docs.rs/lyon_tessellation


But why?

▶ Skia renders by tesselating
2D paths (turn into triangles)

▶ Use 3D pipeline for
rendering (rasterization of
triangles)

▶ MSAA for anti-aliasing

▶ Thin paths can “snake”
through the sample points

▶ Use “analytic anti-aliasing”
(compute exact overlap of
path with pixel)

▶ Difficult on GPU

Source:
https://learnopengl.com/Advanced-OpenGL/Anti-Aliasing

4 / 8

https://learnopengl.com/Advanced-OpenGL/Anti-Aliasing


But why?

▶ Skia renders by tesselating
2D paths (turn into triangles)

▶ Use 3D pipeline for
rendering (rasterization of
triangles)

▶ MSAA for anti-aliasing
▶ Thin paths can “snake”

through the sample points

▶ Use “analytic anti-aliasing”
(compute exact overlap of
path with pixel)

▶ Difficult on GPU

4 / 8



But why?

▶ Skia renders by tesselating
2D paths (turn into triangles)

▶ Use 3D pipeline for
rendering (rasterization of
triangles)

▶ MSAA for anti-aliasing
▶ Thin paths can “snake”

through the sample points
▶ Use “analytic anti-aliasing”

(compute exact overlap of
path with pixel)

▶ Difficult on GPU

4 / 8



But why?

▶ Skia renders by tesselating
2D paths (turn into triangles)

▶ Use 3D pipeline for
rendering (rasterization of
triangles)

▶ MSAA for anti-aliasing
▶ Thin paths can “snake”

through the sample points
▶ Use “analytic anti-aliasing”

(compute exact overlap of
path with pixel)

▶ Difficult on GPU

4 / 8



Prior Work

LP05 Charles Loop and Jim Blinn. 2005. Resolution independent curve rendering using
programmable graphics hardware. ACM Trans. Graph. 24, 3 (July 2005), 1000–1009.
https://doi.org/10.1145/1073204.1073303

NH08 Diego Nehab and Hugues Hoppe. 2008. Random-access rendering of general vector
graphics. ACM Trans. Graph. 27, 5, Article 135 (December 2008).
https://doi.org/10.1145/1409060.1409088

GLFN14 Francisco Ganacim, Rodolfo S. Lima, Luiz Henrique de Figueiredo, and Diego Nehab.
2014. Massively-parallel vector graphics. ACM Trans. Graph. 33, 6, Article 229
(November 2014). https://w3.impa.br/~diego/projects/GanEtAl14/

LHZ16 Rui Li, Qiming Hou, and Kun Zhou. 2016. Efficient GPU path rendering using scanline
rasterization. ACM Trans. Graph. 35, 6, Article 228 (November 2016).
http://kunzhou.net/zjugaps/pathrendering/

5 / 8

https://doi.org/10.1145/1073204.1073303
https://doi.org/10.1145/1409060.1409088
https://w3.impa.br/~diego/projects/GanEtAl14/
http://kunzhou.net/zjugaps/pathrendering/


Research Project
How do the different rendering approaches compare?

▶ CPU vs. Tesselation vs. Compute Shader (compare mobile and desktop)

▶ How to do AA in “raster pipeline”?

▶ github.com/linebender/vello has no paper, but is supposedly competitive.
▶ Papers only use CUDA on nVidia GPU, but how do their techniques fare on

mobile/laptop/web? → modern hardware

Your task:
▶ Understand and write up the different approaches.
▶ Find common abstraction and implement algorithms.
▶ Benchmark on various devices (both performance and visual fidelity).
▶ Try to find improvements or even your own algorithms.
▶ How to deal with scene updates? (Not discussed much in the literature)

6 / 8

github.com/linebender/vello


Research Project
How do the different rendering approaches compare?
▶ CPU vs. Tesselation vs. Compute Shader (compare mobile and desktop)

▶ How to do AA in “raster pipeline”?
▶ github.com/linebender/vello has no paper, but is supposedly competitive.
▶ Papers only use CUDA on nVidia GPU, but how do their techniques fare on

mobile/laptop/web? → modern hardware

Your task:
▶ Understand and write up the different approaches.
▶ Find common abstraction and implement algorithms.
▶ Benchmark on various devices (both performance and visual fidelity).
▶ Try to find improvements or even your own algorithms.
▶ How to deal with scene updates? (Not discussed much in the literature)

6 / 8

github.com/linebender/vello


Research Project
How do the different rendering approaches compare?
▶ CPU vs. Tesselation vs. Compute Shader (compare mobile and desktop)

▶ How to do AA in “raster pipeline”?

▶ github.com/linebender/vello has no paper, but is supposedly competitive.
▶ Papers only use CUDA on nVidia GPU, but how do their techniques fare on

mobile/laptop/web? → modern hardware

Your task:
▶ Understand and write up the different approaches.
▶ Find common abstraction and implement algorithms.
▶ Benchmark on various devices (both performance and visual fidelity).
▶ Try to find improvements or even your own algorithms.
▶ How to deal with scene updates? (Not discussed much in the literature)

6 / 8

github.com/linebender/vello


Research Project
How do the different rendering approaches compare?
▶ CPU vs. Tesselation vs. Compute Shader (compare mobile and desktop)

▶ How to do AA in “raster pipeline”?
▶ github.com/linebender/vello has no paper, but is supposedly competitive.

▶ Papers only use CUDA on nVidia GPU, but how do their techniques fare on
mobile/laptop/web? → modern hardware

Your task:
▶ Understand and write up the different approaches.
▶ Find common abstraction and implement algorithms.
▶ Benchmark on various devices (both performance and visual fidelity).
▶ Try to find improvements or even your own algorithms.
▶ How to deal with scene updates? (Not discussed much in the literature)

6 / 8

github.com/linebender/vello


Research Project
How do the different rendering approaches compare?
▶ CPU vs. Tesselation vs. Compute Shader (compare mobile and desktop)

▶ How to do AA in “raster pipeline”?
▶ github.com/linebender/vello has no paper, but is supposedly competitive.
▶ Papers only use CUDA on nVidia GPU, but how do their techniques fare on

mobile/laptop/web? → modern hardware

Your task:
▶ Understand and write up the different approaches.
▶ Find common abstraction and implement algorithms.
▶ Benchmark on various devices (both performance and visual fidelity).
▶ Try to find improvements or even your own algorithms.
▶ How to deal with scene updates? (Not discussed much in the literature)

6 / 8

github.com/linebender/vello


Research Project
How do the different rendering approaches compare?
▶ CPU vs. Tesselation vs. Compute Shader (compare mobile and desktop)

▶ How to do AA in “raster pipeline”?
▶ github.com/linebender/vello has no paper, but is supposedly competitive.
▶ Papers only use CUDA on nVidia GPU, but how do their techniques fare on

mobile/laptop/web? → modern hardware

Your task:

▶ Understand and write up the different approaches.
▶ Find common abstraction and implement algorithms.
▶ Benchmark on various devices (both performance and visual fidelity).
▶ Try to find improvements or even your own algorithms.
▶ How to deal with scene updates? (Not discussed much in the literature)

6 / 8

github.com/linebender/vello


Research Project
How do the different rendering approaches compare?
▶ CPU vs. Tesselation vs. Compute Shader (compare mobile and desktop)

▶ How to do AA in “raster pipeline”?
▶ github.com/linebender/vello has no paper, but is supposedly competitive.
▶ Papers only use CUDA on nVidia GPU, but how do their techniques fare on

mobile/laptop/web? → modern hardware

Your task:
▶ Understand and write up the different approaches.

▶ Find common abstraction and implement algorithms.
▶ Benchmark on various devices (both performance and visual fidelity).
▶ Try to find improvements or even your own algorithms.
▶ How to deal with scene updates? (Not discussed much in the literature)

6 / 8

github.com/linebender/vello


Research Project
How do the different rendering approaches compare?
▶ CPU vs. Tesselation vs. Compute Shader (compare mobile and desktop)

▶ How to do AA in “raster pipeline”?
▶ github.com/linebender/vello has no paper, but is supposedly competitive.
▶ Papers only use CUDA on nVidia GPU, but how do their techniques fare on

mobile/laptop/web? → modern hardware

Your task:
▶ Understand and write up the different approaches.
▶ Find common abstraction and implement algorithms.

▶ Benchmark on various devices (both performance and visual fidelity).
▶ Try to find improvements or even your own algorithms.
▶ How to deal with scene updates? (Not discussed much in the literature)

6 / 8

github.com/linebender/vello


Research Project
How do the different rendering approaches compare?
▶ CPU vs. Tesselation vs. Compute Shader (compare mobile and desktop)

▶ How to do AA in “raster pipeline”?
▶ github.com/linebender/vello has no paper, but is supposedly competitive.
▶ Papers only use CUDA on nVidia GPU, but how do their techniques fare on

mobile/laptop/web? → modern hardware

Your task:
▶ Understand and write up the different approaches.
▶ Find common abstraction and implement algorithms.
▶ Benchmark on various devices (both performance and visual fidelity).

▶ Try to find improvements or even your own algorithms.
▶ How to deal with scene updates? (Not discussed much in the literature)

6 / 8

github.com/linebender/vello


Research Project
How do the different rendering approaches compare?
▶ CPU vs. Tesselation vs. Compute Shader (compare mobile and desktop)

▶ How to do AA in “raster pipeline”?
▶ github.com/linebender/vello has no paper, but is supposedly competitive.
▶ Papers only use CUDA on nVidia GPU, but how do their techniques fare on

mobile/laptop/web? → modern hardware

Your task:
▶ Understand and write up the different approaches.
▶ Find common abstraction and implement algorithms.
▶ Benchmark on various devices (both performance and visual fidelity).
▶ Try to find improvements or even your own algorithms.

▶ How to deal with scene updates? (Not discussed much in the literature)

6 / 8

github.com/linebender/vello


Research Project
How do the different rendering approaches compare?
▶ CPU vs. Tesselation vs. Compute Shader (compare mobile and desktop)

▶ How to do AA in “raster pipeline”?
▶ github.com/linebender/vello has no paper, but is supposedly competitive.
▶ Papers only use CUDA on nVidia GPU, but how do their techniques fare on

mobile/laptop/web? → modern hardware

Your task:
▶ Understand and write up the different approaches.
▶ Find common abstraction and implement algorithms.
▶ Benchmark on various devices (both performance and visual fidelity).
▶ Try to find improvements or even your own algorithms.
▶ How to deal with scene updates? (Not discussed much in the literature)

6 / 8

github.com/linebender/vello


Programming Project

Build a collaborative digital whiteboard app using your own renderer.

▶ Compare different renderers in practice.
▶ Publish as open source.
▶ Port to different platforms: Linux, Windows, Mac, Android, iOS, web

▶ Don’t need to port to all platforms, but make sure to use platform
independent techniques.

Nice-to-have features:
▶ Pen input: Converting coordinates and pressures to strokes is almost its own

research question...
▶ PDF integration (can use PDFium library)
▶ End-to-end encryption
▶ Your own ideas...

7 / 8



Programming Project

Build a collaborative digital whiteboard app using your own renderer.
▶ Compare different renderers in practice.

▶ Publish as open source.
▶ Port to different platforms: Linux, Windows, Mac, Android, iOS, web

▶ Don’t need to port to all platforms, but make sure to use platform
independent techniques.

Nice-to-have features:
▶ Pen input: Converting coordinates and pressures to strokes is almost its own

research question...
▶ PDF integration (can use PDFium library)
▶ End-to-end encryption
▶ Your own ideas...

7 / 8



Programming Project

Build a collaborative digital whiteboard app using your own renderer.
▶ Compare different renderers in practice.
▶ Publish as open source.

▶ Port to different platforms: Linux, Windows, Mac, Android, iOS, web

▶ Don’t need to port to all platforms, but make sure to use platform
independent techniques.

Nice-to-have features:
▶ Pen input: Converting coordinates and pressures to strokes is almost its own

research question...
▶ PDF integration (can use PDFium library)
▶ End-to-end encryption
▶ Your own ideas...

7 / 8



Programming Project

Build a collaborative digital whiteboard app using your own renderer.
▶ Compare different renderers in practice.
▶ Publish as open source.
▶ Port to different platforms: Linux, Windows, Mac, Android, iOS, web

▶ Don’t need to port to all platforms, but make sure to use platform
independent techniques.

Nice-to-have features:
▶ Pen input: Converting coordinates and pressures to strokes is almost its own

research question...
▶ PDF integration (can use PDFium library)
▶ End-to-end encryption
▶ Your own ideas...

7 / 8



Programming Project

Build a collaborative digital whiteboard app using your own renderer.
▶ Compare different renderers in practice.
▶ Publish as open source.
▶ Port to different platforms: Linux, Windows, Mac, Android, iOS, web

▶ Don’t need to port to all platforms, but make sure to use platform
independent techniques.

Nice-to-have features:
▶ Pen input: Converting coordinates and pressures to strokes is almost its own

research question...
▶ PDF integration (can use PDFium library)
▶ End-to-end encryption
▶ Your own ideas...

7 / 8



Programming Project

Build a collaborative digital whiteboard app using your own renderer.
▶ Compare different renderers in practice.
▶ Publish as open source.
▶ Port to different platforms: Linux, Windows, Mac, Android, iOS, web

▶ Don’t need to port to all platforms, but make sure to use platform
independent techniques.

Nice-to-have features:

▶ Pen input: Converting coordinates and pressures to strokes is almost its own
research question...

▶ PDF integration (can use PDFium library)
▶ End-to-end encryption
▶ Your own ideas...

7 / 8



Programming Project

Build a collaborative digital whiteboard app using your own renderer.
▶ Compare different renderers in practice.
▶ Publish as open source.
▶ Port to different platforms: Linux, Windows, Mac, Android, iOS, web

▶ Don’t need to port to all platforms, but make sure to use platform
independent techniques.

Nice-to-have features:
▶ Pen input: Converting coordinates and pressures to strokes is almost its own

research question...

▶ PDF integration (can use PDFium library)
▶ End-to-end encryption
▶ Your own ideas...

7 / 8



Programming Project

Build a collaborative digital whiteboard app using your own renderer.
▶ Compare different renderers in practice.
▶ Publish as open source.
▶ Port to different platforms: Linux, Windows, Mac, Android, iOS, web

▶ Don’t need to port to all platforms, but make sure to use platform
independent techniques.

Nice-to-have features:
▶ Pen input: Converting coordinates and pressures to strokes is almost its own

research question...
▶ PDF integration (can use PDFium library)

▶ End-to-end encryption
▶ Your own ideas...

7 / 8



Programming Project

Build a collaborative digital whiteboard app using your own renderer.
▶ Compare different renderers in practice.
▶ Publish as open source.
▶ Port to different platforms: Linux, Windows, Mac, Android, iOS, web

▶ Don’t need to port to all platforms, but make sure to use platform
independent techniques.

Nice-to-have features:
▶ Pen input: Converting coordinates and pressures to strokes is almost its own

research question...
▶ PDF integration (can use PDFium library)
▶ End-to-end encryption

▶ Your own ideas...

7 / 8



Programming Project

Build a collaborative digital whiteboard app using your own renderer.
▶ Compare different renderers in practice.
▶ Publish as open source.
▶ Port to different platforms: Linux, Windows, Mac, Android, iOS, web

▶ Don’t need to port to all platforms, but make sure to use platform
independent techniques.

Nice-to-have features:
▶ Pen input: Converting coordinates and pressures to strokes is almost its own

research question...
▶ PDF integration (can use PDFium library)
▶ End-to-end encryption
▶ Your own ideas...

7 / 8



Skills

▶ Programming in a system programming language (probably Rust)
▶ GPU programming (probably wgpu/WebGPU) and rendering
▶ Read and understand scientific papers

8 / 8


