
Fakultät für Elektrotechnik, Informatik und Mathematik

SmartWalk: Enhancing Social
Network Security via Adaptive

Random Walks

Seminar thesis
in

IT-Security

by
Simon Nachtigall

submitted to:
Prof. Dr. Tibor Jager
Paderborn, July 30, 2019

Declaration
(Translation from German)

I hereby declare that I prepared this thesis entirely on my own and have not
used outside sources without declaration in the text. Any concepts or quotations
applicable to these sources are clearly attributed to them. This thesis has not
been submitted in the same or substantially similar version, not even in part, to
any other authority for grading and has not been published elsewhere.

Original Declaration Text in German:

Erklärung
Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen worden ist. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen worden sind, sind als solche gekenn-
zeichnet.

City, Date Signature

iii

Abstract
Random walks are used in many social network security systems. The random
walk length has a big influence on the security and the performance of these
systems. Currrent applications just use the fixed length random walk model,
which leads to a poor trade-off between security and other desirable properties.
Thus, we look in our thesis at the new approach SmartWalk by Liu et al.

[?], which uses adaptive random walks in social network security applciations.
SmartWalk is evaluated for three security applications Sybil defense, Anonymous
communication and Link privacy and compared to the conventional fixed length
model. The results of the evaluation show that the adaptive random walk model
performs for all three applications better than the fixed length model.

v

Contents
1 Introduction 1

1.0.1 Structure of The Thesis 1

2 Motivation 3
2.1 Tree-based PPRFs . 3

2.1.1 Memory consumption of PPRF-tree 4

3 Implementation 7
3.1 Requirements . 7
3.2 Challenges . 7
3.3 Choice of data structure . 8

3.3.1 Array . 8
3.3.2 Linked List . 8
3.3.3 HashMap . 9

3.4 Final implementation . 9
3.4.1 Implementing Linked List 9
3.4.2 Implementing Punc and Eval operation 10

4 Analysis 11
4.1 Measurement Setup . 11
4.2 Memory consumption . 12

4.2.1 Worst-case scenario . 12
4.2.2 Best-case scenario . 14
4.2.3 Normal distribution scenario 15

4.3 Runtime performance . 16

5 Conclusion 21

Bibliography 23

vii

1 Introduction
TLS (Transport Layer Security) are cryptographic protocols to provide secure

communication over a computer network. If a client wants to send securly data to
a server, they both have to establish a secure channel at first. Therefore in TLS
1.2 and older versions, client and server perform a 1-RTT (one round trip time)
handshake protocol. Every time a client resumes a session, the 1-RTT handshake
protocol has to be performed between both parties. Finally, the client is able to
send securly data to the server.

The new TLS 1.3 version introduced a 0-RTT(zero round trip time) mode in
order to minimize latency. When a client wants to resume a session, server and
client do not need to perform a 1-RTT handshake protocol any more. The client
can immediatly sent securely his data to the server, that is why we call it 0-RTT
data. Therefore, the servers issue the client so called session tickets. Every time
a client resumes a session, he needs to resend the issued session ticket together
with its 0-RTT data. Though, the 0-RTT data sent in TLS 1.3 is not forward
secure, as mentioned in the TLS specifiction [3]. Forward security means, that if
an attacker corrupts one of communcation party, then the security of past session
is still guaruanteed. If in TLS 1.3 the server gets corrupted, the attacker is able
to compromise the 0-RTT data of past sessions.

Aviram, Gellert and Jager have shown, that you can use Puncterable Pseudo-
random Functions (PPRF) to achieve forward security in TLS 1.3 0-RTT mode
[1]. They present two different PPRFs for this scenario: 1. RSA-based PPRF, 2.
Tree-based PPRF. In this seminar work, we want to implement the Tree-based
PPRF. The size of this tree construction will grow for large servers with many
clients. Thus, our implemenation should mainly optimize the memory consump-
tion. Aviram et al also gave same expectations about the consumed memory of
the tree construction, which we want to confirm with our implementation results.

1.0.1 Structure of The Thesis
The goal of this thesis, is to present the PPRF-tree implementation results. There-
fore, we start in Chapter 2 the Puncterable Pseudorandom Functions (PPRF) in
general and then the specific PPRF-tree construction. In Chapter 3 we look at the
implementation process more technically. After that, in Chapter 4 we present the
main results of our implementation, which includes the memory consumption and
the runtime analysis. Finally, in Chapter 5 we give an conclusion of this thesis.

1

2 Motivation
As said in the introduction, we want to implement an PPRF-tree construction.
Therefore, we need to introduce the defintion of puncturable pseudorandom func-
tions (PPRF) at first. Then we are able to understand the main concept of an
PPRF-tree construction.

PuncterablePRFS In this section, we explain the basic concept of puncterable
pseudorandom functions.
A puncterable pseudorandom functions describes a special case of a normal

pseudorandom function. As in a PRF, you can evaluate on a input space X
pseudorandom values. Moreover, you have the option to puncture your keys. A
punctured key disallows you evaluation on the inputs that have been punctured in
the past. The basic defintion of a puncterable pseudorandom functions is recalled
from [4]:
Definition 2.1 A puncterable pseudorandom function (PPRF) with keyspace
K, domain X and range Y consists of three polynomial time algorithms PPRF=
(Setup, Eval, Punct), which are described as follows.

• PPRF.Setup(1λ): The Setup algorithm takes as input the security parameter
λ as input and ouputs a description of key k ∈ K.

• PPRF.Eval(k, x): The Evaluation algorithm takes as input a key k ∈ K and
a value x ∈ X and outputs a value y ∈ Y .

• PPRF.Punct(k, x): The Puncture algorithm takes as input a key k ∈ K
and a value x ∈ X and outputs a punctered key y′. ∈ K. After punctering,
evaluation on x is disallowed (PPRF.Eval(k′, x = ∅)) is disallowed.

The security anaylsis of the PPRFs is not necassary for our PPRF-tree imple-
mentation, hence we will skipt it.

2.1 Tree-based PPRFs
The tree-based PPRF construction is based on the GGM (Goldreich-Goldwasser-
Micali) [2] construction. Hence, we start with the explanation of the tree-based
GGM construction, then we will describe the transformation to a PPRF.
Let G : {0, 1}λ → {0, 1}2λ be a pseudo random generator (PRG). We assume

that k is random seed value. Then we define G0(k),G1(k) as the first and second

3

2 Motivation

half of string G(k). A GGM construction is defined as a binary tree on the input
domain of our PRF, where every leaf node represents an evaluation of the PRF.
Every edge to a left child is labeled with 0 and ever edge to a right child is labeled
with 1. Then, we can label every node x = x1 . . . xn ∈ {0, 1}n depending on the
edge values xi on the path from the root node to x. In order to evaluate on the
PRF input x, we compose G along the path from root node to leaf node x and
output (Gxn ◦ · · · ◦G0)(k) ∈ {0, 1}λ. Figure 4 illustrates an evaluation of leaf node
x = 011 with random seed k.

Figure 2.1: This figure illustrates the structure of the implemented linked list.
The size of one element is 36 Byte.

The GGM-tree based construction for PRFs can be transformed to puncter-
able PRFs [?], which works as follows. We define xchild as a child of path p =
(node1, . . . , nodek), if xchild lies not on path p and xchild has a parent node in path
p. If we want to puncture at input x = x1 . . . xn ∈ {0, 1}n, we need to calculate
the evaluation of all childs of path peval = (x1, x1x2, . . . , x1 . . . xn). The output k′

contains the evaluations of all child nodes x1, x1x2, . . . , x1x2 . . . xn. Then, we can
discard our random seed k. After that, all punctering and evaluation operation
are performed on the updated key k′, but evaluation on input x is disallowed. The
puncture operation in figure ?? leads to an updated key k′, which contains three
evaluated nodes. The nodes in the updated key k′ represent the root nodes of the
remaining binary subtrees.

2.1.1 Memory consumption of PPRF-tree
We need to store in our key k′ a certain number of evaluated nodes from the
binary tree. The number of nodes depends on, where we puncture in our binary
tree. In the following, we present three different punctering scenarios and their
influence on the key size. Especially, we want to know for each scenario the peak
size of our key.

Best-Case Scenario In the best case scenario, we start puncteering with the
most left leaf node x = 0 and then puncture in ascending order the leaf nodes

4

2.1 Tree-based PPRFs

Figure 2.2: This figure illustrates the structure of the implemented linked list.
The size of one element is 36 Byte.

from left to right. After punctering the first node, we reach the peak size of our
key with peakbest = depth(PPRF-Tree) = O log n nodes (n number of nodes in
PPRF-Tree. After punctering the first half of the nodes, our key contains only
the root node of the right subtree. After punctuering all possible inputs, our key
is emtpy. There is no other scenario with lower peak size of key k.

Figure 2.3: This figure illustrates the structure of the implemented linked list.
The size of one element is 36 Byte.

Worst-Case Scenario In the worst case scenario, we start puncteering with the
most left leaf node x = 0 and puncture in ascending order every second leaf node
from left to right. In this case, our key contains all leaf nodes that have not been
punctered yet, which is every second leaf node in the binary tree. That means,
we have to store peakworst = n

4 = O(n) nodes. Before reaching the peak size, the
key size increases montonically after every puncture operations. There is no other
scenario with higher peak size of key k.

Normal distribution Scenario Aviram et al. presented a scenario, where leaf
nodes in a certain window are punctered [1] with a higher probability. Therefore,

5

2 Motivation

Figure 2.4: This figure illustrates the structure of the implemented linked list.
The size of one element is 36 Byte.

we generate random values depending on our normal distribution N with standard
deviation σ, which illustrates the window size. In this thesis, we want to find out,
how the window size influences the key size.

Figure 2.5: This figure illustrates the structure of the implemented linked list.
The size of one element is 36 Byte.

6

3 Implementation
In this chapter, we want to look at my implementation of the presented PPRF-tree
construction. First of all, we need to state the requirements of the implementation.

3.1 Requirements
The implementation shall consist two main components:

1. Implement the presented PPRF operations setup, eval und punc.

2. Storage of the remaining subtree root nodes in a compatible data structure.

The data structure can get for greater tree depths very large, therefore we want to
optimize the memory consumption of the data structure. That is the reason, why
we have to find a memory efficient data structure.. Our main focus is optimizing
the memory consumption, though the run time should be acceptable. Additionally,
we want to confirm the memory estimations from the presented worst and best
case scenario (ZITAT).
Furthermore, we need to consider some technical requirements for our imple-

mentation. The programming language is C, because later this tree construction
shall be integrated into OpenSSL, which is written in C. In C, you can do memory
mangement completly on your own. Thus, you can implement with less memory
overhead in comparison to Object-Orientated Programming languages like Java
or C++.

3.2 Challenges
Before implementing the PPRF-tree, we need to point out the challenges for this
purpose.

• Often, there is a tradeoff between memory consumption and run time. If we
want to optimize the memory, we need to be careful that our run time will
not grow excessevly.

• Moreover, the memory consumption of a C program is influenced by the
operating system and the memory hardware. We have to be careful, that
we do not optimize the memory only for our testing machines.

7

3 Implementation

• Another challenge is, that our implementation is part of an security protocol.
That means, we store secret secret data in our implementation and it shall
be impossible to reconstruct this data after deletion.

3.3 Choice of data structure
As mentioned before, we have to select a memory efficient data structure for our
implementation. Therefore we look at ad- and disadvantages of three standard
data structures.

3.3.1 Array
Advantages

• An array is very memory efficient, if you need to store a fixed number of
elements.

• In a sorted array, you can search elements very fast in O(log n) (n: number
of elements)

Disadvantages

• The array size is fixed. Though, our implementation requires a flexible size.
This is also possible in an array by expensive allocation/deallocation of mem-
ory. Altogether this leads to a lot of memory and esapcially management
overhead.

3.3.2 Linked List
Advantages

• A Linked List is a dynamic data structure.

• Implementation is very easy.

Disadvantages

• Each element in the linked list needs some small additional memory over-
head.

• Search operation in a linked list can only performed in O(n) (n: number of
elements)

8

3.4 Final implementation

3.3.3 HashMap
Advantages

• Operations as add/delete/search can be performed quickly in O(1)

Disadvantages

• The size of the hash map is fixed. Similar to the array data structure,
adapting the size leads to memory and management overhead.

• To avoid hash collisions, the hash maps has empty buckets by a factor of
two, which leads to a big memory overhead.

The array and hash map are espacially good for run time optimizations. Linked
list is a good data structure for less memory overhead, if your amount of data is
flexible. Because we want to optimize memory consumption and our data size is
flexible, we decide for implementing the linked list at first.

3.4 Final implementation
s

Figure 3.1: This figure illustrates the structure of the implemented linked list.
The size of one element is 36 Byte.

3.4.1 Implementing Punc and Eval operation
Every Punc/Eval on input x starts with a search operation in the linked list. We
have to find the responsible subtree root node, which contains the leaf node x.
The Punc/Eval operation need a PRG in order to evaluate new nodes in the

binary tree. As suggested in [1], we use the hash function SHA-3 implementation.
Because our security parameter λ is fixed to 128 bit, we choose 256 as the output

9

3 Implementation

size of our hash function. For left child evaluation of node k we cut the first 128
bit of Hsha3(k), for the right child we cut the last 128 bit of the output.

3.4.2 Implementing Linked List
Figure 3.1 shows the final structure of our linked list implementation. One element
in the linked list consists two parts:

1. The structure for linked list overhead (green box): Here, we need to store
2 memory addresses of 8 byte: One to the next element, and one to the
containing value of the linked list.

2. The tree node structure, which is the value of the linked list element (orange
box). The tree node represents one subtree root node in our PPRF-tree. We
have store the key value (128 bit = 16 byte) and the node position (4byte)
in the PPRF-tree.

In total, the size of one element in the linked list is 36 byte. We have some
additional constant memory overhead for our linked list in total, which is 24 byte.
Forumlar 3.1 shows the expected memory size of our linked list.

sizelist = 36n+ 24 [Byte] (3.1)

where:

n : = number of elements in linked list
sizelist : = expected size of linked list in Byte.

10

4 Analysis
In this section, we analyze the peformance of our implementation. First, we will
describe our measurement setup and tools. Second, we evaluate the memory
consumption of our implementation. Finally, we analyze the runtime performance
of different operations in the PPRF Tree.

4.1 Measurement Setup
Hardware Setup We execute all performance test on a Ubuntu 64-bit virtual
machine. Our machine uses an Intel Core i5-7200 CPU @ 2.50 GHz with 5 GB
RAM

Tools In order to measure our performance, we need different tools. The secret
key is dynamically allocated on the memory heap. Therefore, we need to measure
the memory heap size of our implemention. We useValgrind-Massif as a mea-
surement tool for the memory heap size. It distinguishes between the effective
memory heap size and the total memory heap size. The effective memory heap
size contains the allocated heap memory of the programmer, the total memory
heap size contains additionally memory overhead (e.g padding for performance).
For runtime measurements in our implemention, we use the time C-library.

Simulation Setup A simulation run gets three inputs:

1. security parameter λ : This parameter is fixed for all simulations to 128 bit.

2. tree depth d: This parameter states the depth of the PPRF-tree.

3. scenario: As explained in TODO, there are different scenarios how we punc-
ture our PPRF tree. In order to show, that implementation works correctly
we simulate each scenario and evaluate, if the memory behaviour confirms
our assumptions.
• Best case scenario: In this scenario, we puncture our leaf nodes from

left to right. We start with leaf node 1 and then puncture every leaf
node ascending.
• Worst case scenario: In this scenario, we puncture our leaf nodes from

left to right. We start with leaf node 1 and then puncture every second
leaf node.

11

4 Analysis

• Normal distribution scenario: In the last scenario, we puncuture leaf
nodes depending on the normal distribution. The standard deviation
σ of the normal distribution is another parameter for the simulation of
this scenario. The mean of the standard deviation is fixed half of leaf
nodes size. In every simulation step, we generate a normal distributed
leaf number x. This leaf node x is punctured in the PPRF tree

4.2 Memory consumption
We begin the evaluation with the observed memory consumption of the PPRF
tree in our simulation. Therefore, we analyze the 3 presented scenarios.

4.2.1 Worst-case scenario

10 11 12 13 14 15 16
Depth

0

200

400

600

800

1000

1200

KB
yt

e

74.8kB
148.3kB

295.3kB

594.4kB

145.6kB

289.9kB

578.2kB

1159.3kBTotal memory heap size
Effective memory heap size

Figure 4.1: Memory consumption of our implementation depending on the depth
of our PPRF-tree. The orange line shows the measured effective mem-
ory heap size and the blue line shows the total memory heap size.

12

4.2 Memory consumption

Figure 4.1 shows the measured effective and total memory heap size in KByte
for different PPRF-tree depths. First, we focus on the effective memory heap
size (orange points in plot): As we can see, the results confirm our estimations
from formular 3.1. If we calculate for example for tree depth 15 our expected
memory size (295 KByte), we get very close to the measured value 295.3 Kbyte.
Furthermore, the measured memory size grows exponentially. This confirms our
expectations again, because the leaf nodes double by increasing the tree depth by
1. Therefore, in the worst case scenario we have to store twice as much leaf nodes
in our data structure.

Additionally, Figure 4.1 shows the total memory heap size, which includes added
memory overhead. The total memory heap size is nearly twice as big as the
effective memory, which means half of the total memory is overhead. In order to
reduce it, we have to find out, how the overhead is combined.

- One reason for overhead is that structure members are padded to ’natural’
address boundaries for performance reasons. This depends heavily on the
address size of your system (normally 32/64 bit) On the test machine (64-
bit address size) the Tree node structure has an effective memory size of 20
byte, though including padding 32 byte.

- Another reason is, that there is a certain amount of memory overhead (usu-
ally 8 byte) associated with every allocation on the heap. Our implementa-
tion has two memory allocations for one element in the linked list, one for
the linked list structure and one for the tree node structure. That means,
for every element in the linked list we have 16 bytes additonal overhead.
Altogether, the effective memory size is 36 byte and the total size is 64 byte.

One idea to reduce the overhead is to use only one structure in total per element.
As a result, we do not need to store a pointer to the linked list content and we
save 8 byte for the memory allocation. The new structure 4.2 has an effective size
of 28 byte, and would be padded to 32 byte. With the overhead for the memory
allocation, the total memory size for one element would be 40 byte.

Figure 4.2: This figure shows the new proposed structure for a linked list element.
The total size including of one element is 40 Byte.

13

4 Analysis

Furthermore, we want to know, how the memory consumption behaves in one
simulation. Figure 4.3 illustrates, that the memory size grows monotonically. In
the worst case scenario every puncture operation leads to more nodes to store, so
over time the data structure grows as we can see in the measurement.

Figure 4.3: The memory behaviour in a single simulation with PPRF-tree depth
14 in the worst case scenario.

4.2.2 Best-case scenario
Figure 4.4 shows the measured total memory heap size in KByte for different

PPRF-tree depths. We refrain from analyzing the memory overhead in this sce-
nario, because this would be similar to the worst case scenario. The total memory
size only grows linearly, in contrast to the worst-case scenario. As explained in
TODO, our maximum number of lead nodes, we need to store, are the depth of the
PPRF tree. By increasing the tree depth by one, the data structure additionally
contains one more element at peak. The measured memory size is as expected
very low. For all depths, we are still under 3 Kbyte, which is in practice ignorable
in comparison to the worst case scenario.

If we look at the memory behaviour over time in a simulation with depth 14
(Figure 4.5), we can see that the peak point of the memory consumption is right
after the beginning. In the best case scenario, we have store after the first puncture

14

4.2 Memory consumption

10 12 14 16 18 20
Depth

1.0

1.5

2.0

2.5

3.0

3.5

KB
yt

e

1.968kB
2.048kB

2.128kB
2.208kB

2.288kB
2.368kB

2.448kB
2.528kB

2.608kB
2.688kB

2.768kB

Figure 4.4: The figure shows the total memory consumption of our implemented
PPRF-tree construction in the best case scenario depending on PPRF-
tree depth

operation depth of the tree nodes. That is the maximum number in the whole
simulation.

4.2.3 Normal distribution scenario
In the normal distribution scenario, we want to find out how the standard de-
viation influences the memory consumption. Therefore, we look at two exam-
ple simulations of tree depth 14. Figure 4.6 shows the memory heap size for
σ1 = #leaf nodes

5 = 2048 and 4.7 for σ2 = #leaf nodes
20 = 512. as we can see, the peak

heap size for σ1 is 104 KByte and for σ2 32 KByte. A four times smaller standard
deviation leads nearly to three times smaller peak size. The intuition is that with
a greater σ, we puncture more elements far away from the middle leaf nodes. This
leads to a greater number of subtree, we need to store. A smaller σ leads to more
punctures in the middle leafs node area. In this case the possibilty is higher, to
delete nodes in the subtree, because the whole subtree has been punctured.
Another interesting observation is the memory behaviour in both cases. The

memory peak is reached right after the beginning of the simulation and then the
memory size decreases. In the case with smaller σ the memory size converges
faster.

15

4 Analysis

Figure 4.5: The memory behaviour in a single simulation with PPRF-tree depth
14 in the best case scenario.

4.3 Runtime performance
In this section, we want to evaluate the runtime performance of the puncture

and evaluation operation. We want to know how the data structure size and the
number of hash evaluations influence our runtime.

We do analysis only in the worst-case scenario, because in the best case scenario
the data structure is too short to notice significant differences in runtime. First,
we want to focus on the puncture operation.

Figure ?? shows one example simulation of the worst case scenario with tree
depth 14. One data point (x, y) illustrates the execution time y of the puncture
operation at time x. The execution time grows linearly over time until about one
ms in the end. As we have seen in figure 4.1, the data structure size grows over
time. It seems that the greater data structure caueses a higher execution time
for the puncture operation. We can confirm this observation, if we look at the
mean puncture execution time for different tree depths (blue points) in figure ??.
If we increase the tree depth by one, the mean execution time nearly doubles.
Altogether, the execution time grows exponentially just as the total memory heap

16

4.3 Runtime performance

Figure 4.6: Figure 4.7:

0 1000 2000 3000 4000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ce

cu
tio

n
tim

e
of

 p
un

c
in

 m
s

Excecution time of punc in ms

Figure 4.8: Figure shows a simulation with PPRF-tree 14 in the worst case sce-
nario. The blue points display the execution time of single puncture
operations in the simulation

size in figure 4.1. That means, that there is a strong correlation between the data
structure size and the execution for the puncture operation.

In order to find out the exact reason for the increasing execution time, we
additionally need to consider the time for hash evalution in the puncture operation.
The orange points in figure 4.9 show the execution time for a puncture operation
without the hash evaulation. The difference between the blue and the orange
points illustrate the execution time for the hash evaluations. If the depth is
increased, the hash evaluation time stays nearly constant. Therefore, we know

17

4 Analysis

that the data structure size causes the increasing puncture time.

If we look more closely to the procedure of the puncture operation (TODO), we
notice that at the beginning the responsible subtree node for the entered counter
x has to be searched in the linked list. This search operation takes O(n) time,
where n is the number of elements in the linked list. If we increase the number
of nodes in our data structure, the search operation will take longer and lead to
higher exectution time.

10 11 12 13 14 15
Depth of Tree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
in

 m
s

0.068ms
0.089ms

0.13ms

0.22ms

0.41ms

0.734ms

0.025ms
0.046ms

0.089ms

0.172ms

0.351ms

0.687ms

Mean excecution time of punc()
Mean excecution time of punc() without hashing

Figure 4.9: This figure shows the mean execution time of the puncture operation
depending on the PPRF-tree depth. Furthermore, all data points con-
tain error bars. The blue points illustrate the mean execution time
for the puncture operation. The orange points show the mean exe-
cution time for the puncture operation without performing the hash
evaluation opertions

So far, we analyzed the runtime for the puncture operation, but we are missing
the evaluation for the evaluation operation. Figure 4.10 shows the execution
time of single evalaution operations (orange points) in comparison to puncture
operations (blue points). The execution time for evaluation behaves nearly the
same as the puncture operation. This is because at the beginning of the evaluation
operation, the correct subtree has to be searched in the linked list, too. Though,
the execution time is slightly smaller, because we do not perform any modifying
operations on the linked list.

18

4.3 Runtime performance

0 1000 2000 3000 4000
Time

0

2

4

6

8

10

Ex
ce

cu
tio

n
tim

e
of

 p
un

c
in

 m
s

Excecution time of punc in ms
Excecution time of eval in ms

Figure 4.10: Figure shows the execution time of single puncture operations (blue
points) and evaluation operations (orange points) in a simulation over
time . The PPRF tree depth of this simulation is 14 and the simulated
scenario is the worst case scenario.

19

5 Conclusion
In this thesis, we evaluated the implementation results of our PPRF tree imple-

mentation. We simulated our PPRF-free for three different scenarios. We could
confirm the memory consumption assumptions from the paper by Aviram et al
[1]. Moreover, we noticed a lot of additional memory overhead and we presented
a solution to reduce the overhead significantly.

In the third simulation scenario we used the normal distribution for punctering
leaf nodes in the PPRF-tree. The presented simulation consist only a few example
simulation runs. In the future, we need to do a more detailed analysis to get a
more valuable results.

Moreover, we evaluated the runtime performance of our implementation. We
noticed a significant increase of runtime performance for large sizes of our data
structure. The reason behind this observation is, that the search operation in a
linked list needs O(n) (n: number of elements) time steps. An alternative data
structure would be a binary search tree, which can perform a search operation in
O(log n). Furthermore it needs no additional memory in comparison to the linked
list. In the future, the binary search tree for our PPRF-tree construction shall be
implemented and evaluated.

21

Bibliography
[1] Nimrod Aviram, Kai Gellert, and Tibor Jager. Session resumption protocols

and efficient forward security for tls 1.3 0-rtt. Cryptology ePrint Archive,
Report 2019/228, 2019. https://eprint.iacr.org/2019/228.

[2] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, August 1986.

[3] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, August 2018.

[4] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
Deniable encryption, and more. In Proceedings of the Forty-sixth Annual ACM
Symposium on Theory of Computing, STOC ’14, pages 475–484, New York,
NY, USA, 2014. ACM.

23

