
RelayModel

Dennis Suermann

Oct 04, 2021

CONTENTS:

1 RelayModel 1
1.1 RelayModel package . 1

1.1.1 RelayModel.Communication module . 1
1.1.2 RelayModel.ConceptChange module . 6
1.1.3 RelayModel.GraphGeneration module . 6
1.1.4 RelayModel.KeyGeneration module . 7
1.1.5 RelayModel.LinkLayer module . 8
1.1.6 RelayModel.ModuleConfig module . 10
1.1.7 RelayModel.Node module . 12
1.1.8 RelayModel.Relay module . 16
1.1.9 RelayModel.RelayId module . 19
1.1.10 RelayModel.RelayLayer module . 20
1.1.11 RelayModel.RelayLogging module . 26
1.1.12 RelayModel.SortedListNode module . 26
1.1.13 RelayModel.StateMonitor module . 29
1.1.14 RelayModel.Validation module . 30

Python Module Index 33

Index 35

i

ii

CHAPTER

ONE

RELAYMODEL

1.1 RelayModel package

The RelayModel module gives all needed classes and functions to use the RelayModel.

For further information about the usage and structure of this module see the thesis of this module.

The module can be used to simulate distributed systems with the RelayModel. It can also be adapted to implement
basic self stabilising protocols. In this module an adaption of the BuildList protocol, which forms a sorted list, is given
in the SortedListNode.py file. This protocol got modified to use the RelayModel.

1.1.1 RelayModel.Communication module

class RelayModel.Communication.Action(action_type: str, parameters: list)
Bases: object

Defines the main action class for calling actions in a node.

This class holds all information needed to execute a action.

action_type
Holds the action_type or the action name as a string. For a sorted list e.g. “linearize”

Type str

parameters
Holds a list of parameters the action needs for executing

Type list

receiving_relay
Holds a RelayId of the Relay which received this action. This is needed for reversing every receiving relay.

Type RelayId

check_has_key_as_parameter(key)
Checks the parameters of the action if there is a RelayParameter with the given key.

This is needed for removing keys from a probing message if a relay has this key set in one RelayParameter.

Parameters key (str) – Holds the key that should be checked

Returns True if there is a RelayParameter with the given key, otherwise False

Return type bool

1

RelayModel

class RelayModel.Communication.FailureMessage(msg)
Bases: object

Holds a message and signaling a failed message transmission

class RelayModel.Communication.Header(keys, sender_rid, out_id)
Bases: object

Holds information needed for a message header.

The header is needed to validate a transmission over a specific relay.

keys
Holds a set of keys which can authenticate a transmission

Type Set

sender_rid
Holds the rid from a relay layer which transmitted this message

Type RelayLayerId

out_id
Holds the RelayId of a outgoing relay connection.

Type RelayId

class RelayModel.Communication.InRelayClosedAction(keys, sender_rid, relay_id)
Bases: RelayModel.Communication.Action

Defines the InRelayClosed Action and inherits the functionality of Action.

This action is sent when a relay is closed and a relay layer wants to inform the relay layer the outgoing connection
is going to.

keys
Holds a list of keys that a not used anymore and should be corrected in incoming connections

Type list

sender_rid
Holds the RelayLayerId from the RelayLayer that is sending this Action

Type RelayLayerId

relay_id
Holds the RelayId of the Relay that has closing incoming connections

Type RelayId

property keys
Handles the keys stored on the first index in the parameter list

property relay_id
Handles the relay id stored on the third index in the parameter list

property sender_rid
Handles the sender rid stored on the second index in the parameter list

class RelayModel.Communication.LayerMessage(layer_id: RelayModel.RelayId.RelayLayerId, action:
RelayModel.Communication.Action)

Bases: object

Defines a class that holds information for messages between RelayLayers.

This class is used for communications between two RelayLayers.

2 Chapter 1. RelayModel

RelayModel

layer_id
Holds the RelayLayerId of the RelayLayer the message should be sent to.

Type RelayLayerId

action
Holds the Action that should be executed when the relay layer receives the message.

Type Action

class RelayModel.Communication.Message(header: RelayModel.Communication.Header, action:
RelayModel.Communication.Action)

Bases: object

Defines a wrapper class for a message.

The message includes an action and a header.

header
Holds the Header of the message which authenticates it

Type Header

action
Holds the Action that should be executed on arrival of this message

Type Action

class RelayModel.Communication.NotAuthorizedAction(keys, out_id)
Bases: RelayModel.Communication.Action

Defines the NotAuthorized Action and inherits the functionality of Action.

The action is used when a transmission over a relay is not authorized with the given keys. It holds the keys that
a not authorized and the RelayId of the Relay the transmission was not allowed for.

keys
Holds a list of keys the transmission was not authorized for.

Type list

out_id
Holds a RelayId that defines the Relay which should have received the message.

Type RelayId

property keys
Handles the keys attribute stored in the parameter list on first index.

property out_id
Handles the out id attribute stored in the parameter list on second index.

class RelayModel.Communication.OutRelayClosedAction(relay_id)
Bases: RelayModel.Communication.Action

Defines the OutRelayClosed Action and inherits the functionality of Action.

This action is sent when an Relay is closed and it informs all incoming connections of this relay that it is closed.

relay_id
Holds the RelayId of the Relay that got closed

Type RelayId

1.1. RelayModel package 3

RelayModel

property relay_id
Handles the relay id that is stored on the first index in the paremeter list.

class RelayModel.Communication.Ping(relay_id, level, sink_rid, key)
Bases: object

Holds every Attribute needed for a Ping Aktion. This class is not an Action class itself. This class is rather a
helper class for storing information.

relay_id
Holds the RelayId of the relay which incoming connection should be ping checked.

Type RelayId

level
Holds the level information that should be checked for the ping.

Type int

sink_rid
Holds the sink RID of the connection that should be checked in the ping.

Type RelayLayerId

key
Holds the key of the incoming connection which should be checked.

Type str

class RelayModel.Communication.PingAction(pings)
Bases: RelayModel.Communication.Action

Defines the Ping Action and inherits the functionality of Action.

This class holds a list of ping objects. This action is sent to validate incoming connections of a relay.

pings
Holds a list of ping objects. This is compressed to one action because it reduces network traffic over the
LinkLayer

Type list

property pings
Handles the ping list stored in the parameter list on first index.

class RelayModel.Communication.ProbeAction(control_keys, key_sequence)
Bases: RelayModel.Communication.Action

Defines the Probe Action and inherits the functionality of Action.

The ProbeAction is used when trying to validate indirect connections.

control_keys
Holds a list of keys that needs to be checked in the probe message.

Type list

key_sequence
Holds a list of key sets that define a route the probe message went.

Type list

property control_keys
Handles the control keys of the Action from the parameters list stored on first index.

4 Chapter 1. RelayModel

RelayModel

property key_sequence
Handles the key sequence list of the Action from the parameters list stored on second index

class RelayModel.Communication.ProbeFailAction(key, key_sequence)
Bases: RelayModel.Communication.Action

Defines the ProbeFail Action and inherits the functionality of Action.

The action is sent when a probe action failed for a specific key. This class hold the key that failed the probe and
the key sequence for recreating the route of the probe message.

key
Holds the key that caused the probe to fail.

Type str

key_sequence
Holds a list of key sets that define a route the probe message went.

Type list

property key
Handles the key attribute of the Action stored in the parameter list on first index.

property key_sequence
Handles the key sequence attribute of the Action stored in the parameter list on second index.

class RelayModel.Communication.RelayParameter(key, relay_id: RelayModel.RelayId.RelayId, level: int,
rid: RelayModel.RelayId.RelayLayerId)

Bases: object

Holds every information needed for a replacement of a relay.

This replacement has information set for another relay layer to establish a connection.

key
Holds the key that is needed for an authorized connection

Type str

relay_id
Holds the relay id defining the connection relay

Type RelayId

level
Holds the level of the connection

Type int

rid
Holds the RelayLayerId of the sink rid of the connection

Type RelayLayerId

class RelayModel.Communication.SuccessMessage(msg)
Bases: object

Holds a message and signaling a successful message transmission

class RelayModel.Communication.TransmitMessage(message: RelayModel.Communication.Message)
Bases: object

Defines a class that holds information for a transmit message.

This class is used for transmitting a message from one node to another.

1.1. RelayModel package 5

RelayModel

message
Holds the message that should be transmitted over relays

Type Message

1.1.2 RelayModel.ConceptChange module

RelayModel.ConceptChange.calculate_windows(window_a, window_b)
Calculates a change rate of two given windows provided as lists.

The two lists should be of same size.

Parameters

• window_a (list) – Holds the first window

• window_b (list) – Holds the second window

Returns A change rate of the both windows

Return type int

1.1.3 RelayModel.GraphGeneration module

class RelayModel.GraphGeneration.Blueprint
Defines a class that is needed to make a initial graph of nodes and relays. It holds outgoing and incoming blueprint
to establish a connection to other nodes.

in_blueprints
Holds all incoming blueprints to establish incoming connections of a node

Type list

out_blueprints
Holds all outgoing blueprints to establish outgoing connections to other nodes over relays

Type list

class RelayModel.GraphGeneration.InBlueprint(key, rid)
Holds information to establish an incoming connection with relays.

key
Holds the key that authorizes the incoming connection

Type str

rid
Holds the RelayLayerId of the RelayLayer that is allowed to send messages over this incoming connection.

Type RelayLayerId

class RelayModel.GraphGeneration.OutBlueprint(key, sink_rid, direction)
Holds information to establish an outgoing connection with relays.

key
Holds the key that authorizes the outgoing connection

Type str

sink_rid
Holds the RelayLayerId of the RelayLayer that manages the relay of the sink relay of this connection

6 Chapter 1. RelayModel

RelayModel

Type RelayLayerId

out_id
Holds the RelayId of the relay the outgoing connection is pointing to

Type RelayId

direction
Holds information about a possible sorted list configuration. 0 is nothing is set. If 1 is set the connection
is set to the left attribute of the sorted list. If 2 is set the right is set to this relay

Type int

RelayModel.GraphGeneration.make_weakly_connected_sorted_list(node_list)
Makes a list of Blueprints which information builds a weakly connected directed graph.

It takes a list of RelayLayerIds for a specification which nodes should be present in the graph.

Parameters node_list (list) – Holds a list of RelayLayerIds defining Nodes that should be present
in the resulting graph

Returns A dictionary where the key is the RelayLayerId of a node and the value is the Blueprint class
for this node

Return type dict

1.1.4 RelayModel.KeyGeneration module

RelayModel.KeyGeneration.check_key_origin(key: str, layer_id)
Checks if the given key contains the given RelayLayerId.

Parameters

• key (str) – Holds the key that should be checked.

• layer_id (RelayLayerId) – Holds the RelayLayerId of the RelayLayer that should be
checked.

Returns True if prefix of key matches given layer id, False otherwise.

Return type bool

RelayModel.KeyGeneration.generate_key(layer_id)
Generates a key for a given RelayLayerId

Parameters layer_id (RelayLayerId) – Holds the RelayLayerId of the RelayLayer that generates
the key

Returns The generated key as a string in the format “prefix#uniqueId”

Return type str

RelayModel.KeyGeneration.generate_prefix(layer_id)
Generates a prefix for a authentication key. It contains the given RelayLayerId to check the origin of a key.

Parameters layer_id (RelayLayerId) – The RelayLayerId of the RelayLayer that generates the
key

Returns The key prefix as a string

Return type str

1.1. RelayModel package 7

RelayModel

1.1.5 RelayModel.LinkLayer module

class RelayModel.LinkLayer.LinkLayer(link_layer_buffer, relay_layer_buffer, node_buffer, listen_ip,
listen_port, pipe)

The LinkLayer class provides the functionality to send and receive messages to other nodes.

The LinkLayer watches message buffers from the RelayLayer and Relays and sends every message to the right
endpoint. For further information about the functionality see the thesis of this library.

running
Defines the running state of the LinkLayer. If this is False all Thread should be stopped.

Type bool

stopped
Defines the state if the LinkLayer is stopped. It is only set to True if the LinkLayer completely stopped all
threads and processes.

Type bool

check_key_in_relay_buffer(relay_id, check_key)
Checks the buffer of a given Relay if there is a key in one of the Actions.

First the method checks if the buffer exists for the given relay. If there is a buffer it checks if the buffer is
empty. Both conditions return False. After that the message checks all messages in the buffer if there is a
key set in one parameter set as a RelayParameter. This method should be called with the method calling
pipe.

Parameters

• relay_id (RelayId) – Defines the RelayId of the Relay which buffer should be checked.

• check_key (str) – Defines the key that should be checked.

Returns True if there is the given key in one RelayParameter in the buffer of the given Relay.
False otherwise

Return type bool

is_buffer_empty(relay_id)
Checks if a buffer for a given relay id defining a relay is empty.

The method checks if there is a buffer for the given relay id and checks if it is empty. This method should
be called with the method calling pipe.

Parameters relay_id (RelayId) – The RelayId that defines the Relay which buffer should be
checked.

Returns True if buffer is not existent or empty. False if the buffer has an entry.

Return type bool

register_relay_layer(layer_id)
Registers a RelayLayer and creates a buffer watch process.

The LinkLayer creates the buffer watch process for the relay layer. It only creates the process if it is not set
yet.

Parameters layer_id (RelayLayerId) – Defines the RelayLayerId of the RelayLayer which
buffer should be watched.

shutdown()
Shutdowns the LinkLayer completely.

8 Chapter 1. RelayModel

RelayModel

It first shutdowns all Threads and then all subprocesses. This method should be called over the method call
pipe.

stop_relay_watch(relay_id)
Stops a watch of a relay buffer.

The method stops the watch from a relay buffer. This method should be called over the method call pipe.

Parameters relay_id (RelayId) – The RelayId of the Relay which buffer watch should be
stopped.

RelayModel.LinkLayer.send_message(context, layer_id, message)
Used to send a message to a specific link layer.

This message can be used to send a message to another link layer using the lazy pirate pattern. It creates a socket
in the given context and tries to send the given message to the given layer id.

Parameters

• context (zmq.Context) – Defines the context where the socket should created in.

• layer_id (RelayLayerId) – Defines the RID of the LinkLayer that needs to receive the
message.

• message (Object) – The message that should be send. Normally this should be a Trans-
mitMessage object or a LayerMessage. Otherwise the other LinkLayer will deny the mes-
sage. But in general every object can be sent over the socket.

Returns

True if the message got accepted or is received by the link layer, False if the Message was denied or
could not be sent.

Return type bool

RelayModel.LinkLayer.start_layer_buffer_watch(layer_id, buffer, relay_layer_buffer, running)
Starts a watch over a RelayLayer buffer.

It watches a given buffer and if there occurs a message it tries to send it to the right endpoint. This method
should be called in a seperated process. The function runs as long the running state is equal to 1 and tries to get
a message from the buffer.

Parameters

• layer_id (RelayLayerId) – Defines the layer id of the relay layer that registered in this
function. This is only needed for creating a logger file.

• buffer (multiprocessing.Queue) – Defines the buffer that should be watched as a mul-
tiprocessing queue.

• relay_layer_buffer (multiprocessing.Queue) – Defines the message buffer of a Re-
layLayer. This buffer is needed to send messages to the same RelayLayer as registered.

• running (multiprocessing.Value) – Defines the running state of the function. If this
value is set to 0 the function stops. This is used to stop the function within a process from a
parent process.

RelayModel.LinkLayer.start_link_layer(link_layer_buffer, relay_layer_buffer, node_buffer, listen_ip,
listen_port, pipe)

Creates a link layer and waits until it got stopped.

This function should be called with a new process.

1.1. RelayModel package 9

RelayModel

Example

A basic example is given here. It creates a Process and starts it afterwards

process = multiprocessing.Process(target=start_link_layer, args=(link_layer_buffer, message_buffer,
node_queue, layer_id.ip, layer_id.port, link_layer_pipe)) process.start()

Parameters

• arguments. (All arguments are the same as the LinkLayer constructor) –

• docs. (For further information see LinkLayer class) –

RelayModel.LinkLayer.start_listening(listen_ip, listen_port, relay_layer_buffer, running)
Starts listening on a specific ip and port and can be used to receive messages on this address.

The function creates a listening socket on the given address and tries, as long the running state is 1, to receive
messages from it. When a message is received it will get checked if it is a LayerMessage or a TransmitMes-
sage. If the format is correct it sends a SuccessMessage back to the sending LinkLayer. Otherwise it sends a
FailureMessage back. If the message is a valid Message the message will be provided to the RelayLayer of this
LinkLayer. This is done by inserting the message in the given RelayLayer message buffer.

Parameters

• listen_ip (str) – The ip the socket should be listen on. This is only used for the logger
file name. The socket normally listens on every interface on a specific port.

• listen_port (int) – Defines the port the socket should listen on.

• relay_layer_buffer (multiprocessing.Queue) – Provides the message buffer of a Re-
layLayer. It is used to send received messages to the RelayLayer so it can process the mes-
sage.

• running (multiprocessing.Value) – Defines the running state of the function. If this
value is set to 0 the function stops. This is used to stop the function within a process from a
parent process.

1.1.6 RelayModel.ModuleConfig module

RelayModel.ModuleConfig.CHANGE_ALPHA = -10
Defines the change rate threshold for a dos attack detection.

This value should always be lower than 0. Otherwise falling transmit rates get detected as dos attacks. Normally
this is set to -10.

RelayModel.ModuleConfig.CONSIDER_AS_CLOSED = False
Stores the flag if the link layer should send closed messages if one link layer is not reachable.

If this is set to False it will only discard the messages after the retries. Otherwise it will send In- and OutRelay-
Closed Actions. Normally this is set to False.

Type bool

RelayModel.ModuleConfig.DOS_DETECTION_ACTIVATED = True
Stores the flag if the dos detection should be used.

If this is set to True the RelayLayer is watching transmit rates and try to detect dos attacks. Normally this is set
to True.

10 Chapter 1. RelayModel

RelayModel

RelayModel.ModuleConfig.NODE_TIMEOUT_PERIOD = 1
Defines the timeout period of a node.

Normally this is set to 1 second.

Type float

RelayModel.ModuleConfig.NO_MONITOR_ACTIONS = ['Probe', 'ProbeFail', 'NotAuthorized',
'Ping', 'InRelayClosed', 'OutRelayClosed']

Stores the actions that are standard actions from the RelayLayer.

This actions are not monitored on transmission because a node should not have access to this actions. It is stored
in a list where each entry has the action name set. Normally this is set to [‘Probe’, ‘ProbeFail’, ‘NotAuthorized’,
‘Ping’, ‘InRelayClosed’, ‘OutRelayClosed’]

RelayModel.ModuleConfig.POLL_TIMEOUT = 300
Timeout in milliseconds for polling receiving messages when sending in link layer.

Normally this is set to 300 ms.

Type int

RelayModel.ModuleConfig.POLL_TRIES = 3
Tries until the receiving socket is considered as closed.

Normally this is set to 3 tries.

Type int

RelayModel.ModuleConfig.RELAY_LAYER_TIMEOUT_PERIOD = 1
Defines the timeout period of a relay layer.

Normally this is set to 1 second.

Type float

RelayModel.ModuleConfig.RELAY_LOG_LEVEL = 30
Holds the logging level of all loggers in this module.

Normally this is set to logging.WARNING

Type int

RelayModel.ModuleConfig.RESULTS_FOLDER = 'results/'
Defines the folder where the StateMonitor should write result files to.

Normally this is set to the folder named “results/”.

RelayModel.ModuleConfig.STATE_MONITOR_ADDRESS = 'localhost:1999'
Defines the full address of the StateMonitor including ip and port.

Normally the ip of the address is localhost.

RelayModel.ModuleConfig.STATE_MONITOR_PORT = 1999
Defines the port of the StateMonitor

Normally this is set to port 1999.

RelayModel.ModuleConfig.WINDOW_SIZE = 20
Defines the window size for the dos detection.

This should be a value that is dividable by 2. Normally this is set to 20.

1.1. RelayModel package 11

RelayModel

1.1.7 RelayModel.Node module

class RelayModel.Node.Node(node_id: int, ip: str, port: int, analyse_mode=False)
The Node class represents a Node in a distributed System.

The Node class is the main class for creating distributed protocols with the relay model. This class implements
functionality to work with the relay model and leave a system without harming its connectivity. It implements
the protocol provided by Setzer in his phd thesis: (https://digital.ub.uni-paderborn.de/urn/urn:nbn:de:hbz:466:
2-37849).

buffer
Defines a buffer for the node where actions can be inserted by the RelayLayer. Every action in this buffer
gets processed by the node.

Type multiprocessing.Queue

relay_layer
Stores a RelayLayer object for this node.

Type RelayLayer

running
Stores the state of the node. If True the node is running if False the node is not running and all threads are
stopped.

Type bool

timeout_thread
Stores the timeout thread where timeout action were inserted in the message buffer.

Type threading.Thread

message_thread
Stores the message thread of the node. The thread periodically checks if there is a new Action in the
node_buffer and executes the Action.

Type threading.Thread

logger
Stores the Logger class of the Node.

Type logging.Logger

timeout_period
Stores the period of the timeout execution. By default this is set to the value set in the ModuleConfig.

Type float

leaving
Stores the leaving state of the node. When set to True the Node changes its behaviour where it tries to leave
the system by the protocol provided by Setzer.

Type bool

in_ref
Stores a relay id to the main sink relay of this node.

Type RelayId

N
Stores a list which is a pseudo variable for all relays stored in an underlying protocol.

Type list

12 Chapter 1. RelayModel

https://digital.ub.uni-paderborn.de/urn/urn:nbn:de:hbz:466:2-37849
https://digital.ub.uni-paderborn.de/urn/urn:nbn:de:hbz:466:2-37849

RelayModel

D
Stores a list of RelayIds which should be deleted in the protocol.

Type list

a_out
Stores the RelayId of the outgoing ancher.

Type RelayId

a_in
Stores the RelayId of the incoming ancher.

Type RelayId

analyse_mode
Handles the analyse mode of the node. When set to True the Node is executed in analyse mode and sends
every timeout a state to a StateMonitor. By default this is set to False and can be activated either in the
constructor or by changing the attribute.

Type bool

ask_to_reverse(out: RelayModel.RelayId.RelayId)
Implements the ask_to_reverse protocol method.

For further information see the phd thesis.

Parameters out (RelayId) – Defines the RelayId that should be reversed.

ask_to_reverse_anchor(out: RelayModel.RelayId.RelayId, receiving_relay:
RelayModel.RelayId.RelayId)

Implements the ask_to_reverse_anchor protocol method.

For further information see the phd thesis.

Parameters

• out (RelayId) – Defines a Relay.

• receiving_relay (RelayId) – Defines the relay that received this action.

call_method(relay_id: RelayModel.RelayId.RelayId, method: str, parameters: list)
Calls a method of another node connected with the given relay.

This method calls the given method with the given parameters in the node that handles the sink relay that
is connected with the relay defined by the given relay id. It calls the send method from the RelayLayer to
send the method to the node.

Parameters

• relay_id (RelayId) – Defines the Relay which is used to send the action.

• method (str) – Defines the name of the method that should be executed in the other node.

• parameters (list) – Defines a list of parameters used to execute the method.

check_in_original_variables(relay_id: RelayModel.RelayId.RelayId)
Should be overridden to check if a specific relay is in one of the underlying protocol variables.

By default it checks if the relay is in the attribute N. This should be changed to a better implementation
when implementing a underlying protocol.

1.1. RelayModel package 13

RelayModel

Example

See SortedListNode implementation.

Parameters relay_id (RelayId) – Defines the RelayId that should be checked.

get_relays_from_original_variables()
Should be overridden to get all relays from underlying protocol variables.

This normally just returns the N attribute list. This should be changed to a better implementation when
implementing a underlying protocol. It should return a list of RelayIds that are stored in any variable define
in the protocol.

Example

See SortedListNode implementation.

Returns A list of RelayIds containing in variables of the protocol.

Return type list

notify_anchor()
Implements the notify_anchor protocol method.

For further information see the phd thesis.

original_timeout()
Can be overridden to implement a underlying protocol timeout.

This method is automatically executed on the end of every timeout of this node class. It should be imple-
mented with the timeout of the underlying protocol.

Example

See SortedListNode

remove_from_original_variables(relay_id: RelayModel.RelayId.RelayId)
Should be overridden to remove relays from underlying protocol variables.

By default it removes the given relay id from the N attribute. This should be changed to a better implemen-
tation when implementing a underlying protocol.

Example

See SortedListNode implementation.

Parameters relay_id (RelayId) – Defines the RelayId that should be removed from the vari-
ables.

replace_action(action)
This method is called whenever the node received a Action.

The method executes the method defined in the received action if the node is staying or reverses the con-
nection if the node is leaving.

Parameters action (Action) – The received action that should be executed.

14 Chapter 1. RelayModel

RelayModel

reversal_of_relay(relay_id: RelayModel.RelayId.RelayId)
Should be overridden to reverse a specific relay reference.

The method should just send a node action from the underlying protocol over the given relay with the in_ref
as parameter.

Example

See SortedListNode. Example for the linearize Action

self.call_method(relay_id, ‘linearize’, [self.in_ref])

reverse(out: RelayModel.RelayId.RelayId)
Implements the reverse protocol method.

For further information see the phd thesis.

Parameters out (RelayId) – Defines a Relay.

send_analyse_state()
Should be overridden to send a state to a StateMonitor.

In this method a State object should be created. After that it should be sent with the send_state_to_monitor
method.

Example

See SortedListNode implementation.

send_state_to_monitor(state)
Sends the given state to the StateMonitor.

The method sends the given state to the address defined in the ModuleConfig.

Parameters state (Object) – Defines the state that should be sent. This should be a object of
a state class.

shutdown()
Completely shutdown the node.

The method stops all threads by setting the running state to False. After that it stops the RelayLayer and
waits until the RelayLayer deleted all Relays.

start()
Starts the node by starting all threads.

The node gets started by starting the message thread and the timeout thread.

stop()
Stopping the node so that the node should leave the system.

The method sets the leaving state to True and activates the leaving protocol of the node.

timeout()
The Timeout method is called periodically and corrects all values in the node.

The method is correcting every value in the node or if the node is leaving it will prepare the node for leaving.
For further information about the protocol see the thesis of this paper.

1.1. RelayModel package 15

RelayModel

1.1.8 RelayModel.Relay module

class RelayModel.Relay.InReference(key='', rid=None, relay=None)
Holds the information needed for an outgoing connection to another Relay.

key
Stores the key of the incoming connection

Type string

rid
Stores the RelayLayerId defining the RelayLayer which is allowed to send messages over this incoming
connection

Type RelayLayerId

relay
Stores the Relay which forwarded the reference. This incoming connection is not validated yet if the relay
is set but the rid is not.

Type Relay

check_valid()
Checks if the incoming Reference is filled correctly.

Returns true if key is set and relay is set to a Relay object and rid is None or relay is none and rid is set to
a RelayLayerId object.

Returns

True if key is set and relay is set to a Relay object and rid is None or relay is none and rid is set
to a RelayLayerId object. False otherwise.

Return type bool

property key
Handles the connection key.

property relay
Handles the relay of the incoming connection.

Sets the value only if the given value is an instance of Relay. Otherwise it is set to None.

property rid
Handles the rid of the incoming connection

When setting this attribute, the value is only set to the given value if it is an instance of RelayLayerId.
Otherwise it is set to None.

class RelayModel.Relay.OutReference(keys=None, out_id=None)
Holds the information needed for an outgoing connection to another Relay.

keys
Stores all keys in a set used in the outgoing connection

Type set

out_id
Stores the RelayId defining the Relay to which the OutReference is connected to

Type RelayId

add_key(key)
Adds the given key to the set of keys.

16 Chapter 1. RelayModel

RelayModel

Parameters key (str) – The key that should be added.

property keys
Handles the keys attribute. When setting the value the attribute is only set if it is an object of type set.

property out_id
Handles the outgoing relay id. If setting this value it is only set if the given id is an instance of RelayId or
None for a sink relay.

remove_key(key)
Removes the given key from the set.

Parameters key (str) – The key string that should be removed

class RelayModel.Relay.Relay(relay_id: RelayModel.RelayId.RelayId)
The Relay class holds every information used to define a Relay for the RelayLayer.

relay_id
Stores the RelayId of the specific relay. Can be set via the constructor.

Type RelayId

alive
Stores the state of the relay if it is dead or alive. By default this is set to True.

Type bool

out_relay
Stores the outgoing connection of the Relay. This is by default an empty OutReference. Which means the
created Relay is a sink relay.

Type OutReference

level
Stores the level of the Relay which describes the amount of hops needed to arrive at a sink relay. By default
is this set to 0.

Type int

sink_rid
Stores the RelayLayerId managing the sink relay of this relay. By default this is set to the RelayLayerId
holding this exact relay.

Type RelayLayerId

in_relays
Stores the incoming connections of the relay as a list of InReference objects. By default this is set to an
empty list.

Type list

validated
Stores the validated flag of a relay. Needed for deletion issues in Node class.

Type bool

dos_threshold
Stores the threshold of this relay object for dos detection. By default this is set to the threshold set in the
module config.

Type int

add_in_reference(in_ref)
Adds a given incoming reference to the list of incoming references.

1.1. RelayModel package 17

RelayModel

The given incoming reference gets only added if it is an object of the InReference class.

Parameters in_ref (InReference) – InReference object that should be added as a incoming
connection.

clear_in_relays()
Removes all incoming references from the relay.

get_valid_keys(sender_rid)
Gets all keys that are set in incoming references where the rid is set to the given rid.

Parameters sender_rid (RelayLayerId) – The RelayLayerId for which all keys are fetched.

Returns A list of keys that are set in incoming references.

Return type list

has_incoming()
Return the amount of incoming connections of the relay.

Returns The amount of incoming connections.

Return type int

has_key_in_in_ref(key)
Checks if the given key is in one of the incoming references.

Parameters key (str) – The key that should be checked.

Returns True if the key is set in one incoming reference, False otherwise.

Return type bool

is_dead()
Returns true if the Relay is not alive. Otherwise it returns false.

The relay is not alive if the alive state is false.

Returns True if the alive state is False, False otherwise.

Return type bool

is_direct()
Returns true if level is lower or equal than one. Otherwise it returns false.

Returns True if the relay is a direct relay, False otherwise.

Return type bool

is_sink()
Returns true if the relay level is zero and false otherwise.

Returns True if the relay is a sink relay, False otherwise.

Return type bool

remove_in_reference(in_ref)
Removes the given incoming reference from the incoming reference list.

If the given in reference is not in the list nothing happens.

Parameters in_ref – The reference that should be removed as InReference object.

remove_in_reference_by_key_and_rid(key, rid)
Removes all incoming references of this relay if the InReference key and rid equals to the given key and
rid.

Parameters

18 Chapter 1. RelayModel

RelayModel

• key (str) – The key that should be compared to remove the InReferences

• rid (RelayLayerId) – The RelayLayerId that should be compared to remove the InRef-
erences

remove_in_reference_by_relay(relay)
Removes all incoming references of this relay when the relay of the InReference is set to the given relay.

Parameters relay (Relay) – The relay that needs to be set for deleting the InReference.

remove_in_reference_by_relay_and_key(key, relay)
Removes all incoming reference if the key and relay is set to the given key and relay.

Parameters

• key (str) – The key that should be compared to remove the InReferences

• relay (Relay) – The relay that should be compared to remove the InReferences

remove_in_reference_by_rid(rid)
Removes all incoming references of this relay when the rid of the InReference is set to the given rid.

Parameters rid (RelayLayerId) – The relay for which all InReferences should be removed.

replace_relay_in_references(previous_relay, new_relay)
Replaces the relay in all in references to the given new relay if the relay is set to the given previous relay.

Parameters

• previous_relay (Relay) – The relay that should be replaced

• new_relay (Relay) – The relay that should be in the incoming connections after replace-
ment.

same_target(other)
Compares the outgoing connection of this relay to another relay.

Parameters other (Relay) – The Relay which should be compared.

Returns True if both have same target, False otherwise.

Return type bool

1.1.9 RelayModel.RelayId module

class RelayModel.RelayId.RelayId(layer_id: RelayModel.RelayId.RelayLayerId, relay_id: int)
Holds the information identifying a specific relay.

layer_id
Holds the reference to a RelayLayerId which defines the RelayLayer holding the Relay defined by this
RelayId

Type RelayLayerId

relay_id
Holds an identifier for the Relay which defines a specific Relay in a RelayLayer

Type int

class RelayModel.RelayId.RelayLayerId(ip: str, port: int)
Holds the information identifying a relay layer.

ip
Defines the address on which the relay layer should be reachable.

1.1. RelayModel package 19

RelayModel

Type str

port
Defines the port on which the relay layer should be reachable.

Type int

node_id
Defines the id of a node if it is needed to form a topology.

Type int

property node_id
Handles the internal id storing the node id of a node.

1.1.10 RelayModel.RelayLayer module

class RelayModel.RelayLayer.RelayLayer(layer_id, node_queue)
Represents the implementation of the Relay Layer in the relay model.

The RelayLayer class handles all connections over Relays and tries to stabilize the Relay information by commu-
nicating with other RelayLayers. It starts a LinkLayer inside a separated process to send messages over Relays.
Furthermore it starts three threads. The first thread sends messages to the LinkLayer. The second Thread is the
timeout thread which periodically executes the timeout method of the RelayLayer. The last thread watches the
message buffer.

For further information about the RelayLayer see the thesis of this library.

link_layer_buffer
Stores the buffer of the LinkLayer where messages should be inserted. This messages will get inserted in
the right buffer and will be processed from the LinkLayer. The objects that are inserted are always a tuple
of data. The first entry of the tuple is either a Relay object if the message should be inserted into a relay
buffer or a RelayLayerId when the message should be sent to another RelayLayer.

Type multiprocessing.Queue

link_layer_call_pipe
Holds the communication pipe of the LinkLayer. This pipe is used to call methods inside the LinkLayer
process. A method can be called with the internal method _call_link_layer_message.

Type multiprocessing.Pipe

message_buffer
This buffer holds messages that needs to be processed by this RelayLayer. It gets filled by the LinkLayer if
it receives a message.

Type multiprocessing.Queue

link_layer_process
Holds the LinkLayer process executing the LinkLayer.

Type multiprocessing.Process

RID
Holds the id defining this specific relay layer.

Type RelayLayerId

relays
Holds a dict of relays. The key is the RelayId of the specific relay and the value the Relay object.

Type dict

20 Chapter 1. RelayModel

RelayModel

last_id
Stores the last id relay id for creation of a new relay. This is counted up when creating a new relay.

Type int

active
Holds the active state of the RelayLayer. If this is set to False the RelayLayer tries to shutdown. By default
this is set to True.

Type bool

running
Holds the running state of the RelayLayer. If this is set to False the RelayLayer is stopped and all threads
are shutting down.

Type bool

calling_lock
Holds a Lock object to prevent simultaneous access to the link_layer_call_pipe.

Type threading.Lock

logger
Holds the Logger object of this class.

Type logging.Logger

buffer_put_actions
Defines a buffer where every message that needs to be inserted in a buffer gets inserted. The
buffer_put_thread is sending this messages to the LinkLayer.

Type deque

buffer_put_thread
The thread removes every message containing in the buffer_put_actions and sends it to the LinkLayer with
the link_layer_buffer.

Type threading.Thread

message_handling_thread
Holds the thread that executes every action sent to the RelayLayer. The messages are inside the mes-
sage_buffer attribute.

Type threading.Thread

timeout_thread
Holds the timeout thread where the RelayLayer periodically executes the timeout method.

Type threading.Thread

relay_windows
Stores the windows of each relay for DoS attack mitigation. The key is the RelayId and the value is the
window for the specific Relay as a deque object.

Type dict

transmit_count
Stores the transmit count of a specific relay. The key is the RelayId and the value is the count of transmit
messages sent over the specific Relay.

Type dict

add_relay_to_layer(new_relay: RelayModel.Relay.Relay)
Adds a Relay object to the RelayLayer.

1.1. RelayModel package 21

RelayModel

The method only accepts Relay object and only adds it to the layer if the relay id is not present in the layer.

Parameters new_relay (Relay) – The Relay object that should be added to the layer.

check_dos_attack(relay)
Checks if a dos attack is likely.

For further information see thesis of this library.

Parameters relay (Relay) – The Relay for which the rates should be checked.

check_relay_exists(relay_id: RelayModel.RelayId.RelayId)
Checks if a Relay is existing in the RelayLayer.

Parameters relay_id (RelayId) – The RelayId representing the Relay shat should be checked.

Returns True if Relay exists in RelayLayer, False otherwise.

Return type bool

delete(relay_id: RelayModel.RelayId.RelayId)
Deletes a relay.

For further information see the thesis of the library or the phd thesis of Setzer.

Parameters relay_id (RelayId) – The RelayId of the Relay that should be deleted.

get_key_for_layer()
Gets a authentication key generated by the RelayLayer.

Returns A key used for authenticating a connection.

Return type str

get_level(relay_id: RelayModel.RelayId.RelayId)
Gets the connection level of a relay.

Parameters relay_id (RelayId) – The RelayId representing the Relay that should be checked.

Returns The level of the connection.

Return type int

get_new_relay_object()
Gets a new relay object.

The method creates a new Relay in the RelayLayer but instead of adding it to the RelayLayer it just returns
the object of it. This is needed to create connections between Nodes. The Relay can later be added to the
RelayLayer by executing the add_to_layer method.

Returns A new Relay object.

Return type Relay

get_relay_by_relay_id(relay_id)
Gets the Relay object of defined by the given RelayId.

This should only be used for analysing purposes. Normally one should not have access to the relay object
from outside.

Parameters relay_id (RelayId) – The RelayId of the Relay that should be returned.

Returns The Relay object defined by the given RelayId or None if the Relay is not existent in the
RelayLayer.

Return type Relay

22 Chapter 1. RelayModel

RelayModel

get_relays()
Gets all RelayIds of the Relays present in the RelayLayer.

Returns A list of RelayIds present in the RelayLayer.

Return type list

get_sink_node_id(relay_id: RelayModel.RelayId.RelayId)
Gets the node id of the node holding the sink relay of the connection defined by the given relay.

Parameters relay_id (RelayId) – The RelayId representing the Relay that should be checked.

Returns The node id of the sink relay.

Return type int

get_validated_relays()
Gets all RelayIds of the validated Relays present in the RelayLayer.

Returns A list of RelayIds which Relay is validated present in the RelayLayer.

Return type list

handle_in_relay_closed(keys: list, sender_rid: RelayModel.RelayId.RelayLayerId, relay_id:
RelayModel.RelayId.RelayId)

The method is called when a InRelayClosed message is received by the RelayLayer.

For further information see the thesis of this library.

Parameters

• keys (list) – The list of keys that are used in the closed connection.

• sender_rid (RelayLayerId) – The RelayLayerId of the RelayLayer that sent the mes-
sage.

• relay_id (RelayId) – The relay id that is closed.

handle_not_authorized(keys, out_id)
The method is called when a NotAuthorized message is received by the RelayLayer.

For further information see the thesis of this library.

Parameters

• keys (list) – List of keys.

• out_id (RelayId) – The RelayId that is not authorized.

handle_out_relay_closed(relay_id: RelayModel.RelayId.RelayId)
The method is called when a OutRelayClosed message is received by the RelayLayer.

For further information see the thesis of this library.

Parameters relay_id (RelayId) – The RelayId of the Relay that is closed.

handle_ping(relay_id: RelayModel.RelayId.RelayId, level: int, sink_rid:
RelayModel.RelayId.RelayLayerId, key: str)

The method is called when a Ping message is received by the RelayLayer.

For further information see the thesis of this library.

Parameters

• relay_id (RelayId) – The relay id there should be a connection to.

• level (list) – The level of the connection.

1.1. RelayModel package 23

RelayModel

• sink_rid (RelayLayerId) – The sink rid of the connection.

• key (str) – The key of the connection

handle_probe_fail(key, key_sequence)
The method is called when a ProbeFail message is received by the RelayLayer.

For further information see the thesis of this library.

Parameters

• key (str) – Key that failed the Probe message.

• key_sequence (list) – List of key lists that represent the route the Probe message went.

handle_transmit(message)
The method is called when a transmit message is received by the RelayLayer.

For further information see the thesis of this library.

Parameters message (Message) – The message that got transmitted.

has_incoming(relay_id: RelayModel.RelayId.RelayId)
Returns the amount of incoming connections of a given relay.

Parameters relay_id (RelayId) – The RelayId representing the Relay that should be checked.

Returns The amount of incoming connections.

Return type int

is_dead(relay_id: RelayModel.RelayId.RelayId)
Checks a Relay if it is dead.

Parameters relay_id (RelayId) – The RelayId representing the Relay that should be checked.

Returns True if the specific relay is dead, False otherwise.

Return type bool

is_direct(relay_id: RelayModel.RelayId.RelayId)
Checks a Relay if it is a direct relay.

Parameters relay_id (RelayId) – The RelayId representing the Relay that should be checked.

Returns True if the specific relay is a direct relay, False otherwise.

Return type bool

is_sink(relay_id: RelayModel.RelayId.RelayId)
Checks a Relay if it is a sink relay.

Parameters relay_id (RelayId) – The RelayId representing the Relay that should be checked.

Returns True if the specific relay is a sink relay, False otherwise.

Return type bool

merge(relays)
Merge method of the RelayLayer.

For further information see the thesis of the library or the phd thesis of Setzer.

Parameters relays (list) – A list of relay ids that should be merged to one relay.

Returns The RelayId of the merged Relay or None if merge was not successful.

Return type RelayId or None

24 Chapter 1. RelayModel

RelayModel

monitor_timeout_transmit_rate(relay)
Monitors transmit rates.

For further information see thesis of this library.

Parameters relay (Relay) – The Relay for which the rate should be inserted.

monitor_transmit(message, relay)
Monitors transmits.

For further information see thesis of this library.

Parameters

• message (Message) – The message that is transmitted.

• relay (Relay) – The Relay that transmitted the message.

new_relay()
Gets a new relay reference.

The RelayLayer creates a new Relay object and provides the RelayId of it.

Returns of the new Relay object.

Return type RelayId

same_target(relay_id_1: RelayModel.RelayId.RelayId, relay_id_2: RelayModel.RelayId.RelayId)
Checks if two relays have the same outgoing connection.

Parameters

• relay_id_1 (RelayId) – The first relay that should be checked.

• relay_id_2 (RelayId) – The second relay that should be checked.

Returns True if the specific relays have the same outgoing connection, False otherwise.

Return type bool

send(send_relay_id: RelayModel.RelayId.RelayId, action: RelayModel.Communication.Action)
Send a action over a specific relay.

For further information see the thesis of this library.

Parameters

• send_relay_id (RelayId) – The RelayId representing the Relay which should transmit
the action.

• action (Action) – The action that should be transmitted.

shutdown()
Shutdown the RelayLayer completely without removing Relay connections.

stop()
Stops the Relay Layer.

The method stops by deleting all relays and setting the active state to False.

timeout()
The timeout method of the RelayLayer.

For further information see the thesis of the library or the phd thesis of Setzer.

validate_relay(relay_id: RelayModel.RelayId.RelayId)
Validates a given Relay.

1.1. RelayModel package 25

RelayModel

The method validates the Relay by setting its validated flag to True.

Parameters relay_id (RelayId) – The RelayId of the Relay that should be validated.

1.1.11 RelayModel.RelayLogging module

RelayModel.RelayLogging.get_logger(log_level, file_name)
Creates a logger object with the given log leven and the output file name.

Note: The file_name should be unique to the specific purpose. Otherwise it can

Parameters

• log_level (int) – Defines the log level of the Logger. Normally this should be set to the
module config log level.

• file_name (str) – Defines the file the logging informations should be written to.

Returns The logger object with the specific log level and filename.

Return type logging.Logger

RelayModel.RelayLogging.relay_list_to_string(relays)
Makes a well formed string from a relay list.

Outputs a string for the given relay list where every relay is shown with its relay id and its connection to.

Parameters relays (list) – A list of relays that should be converted to a string.

Returns A well formed str of a list full of relays.

Return type str

1.1.12 RelayModel.SortedListNode module

class RelayModel.SortedListNode.SortedListNode(node_id, ip: str, port: int, analyse_mode=False)
Bases: RelayModel.Node.Node

The implementation of a sorted list node.

This class is an implementation of a sorted list protokoll. It is adjusted to work with the relay modell.

node_id
Holds the node id of the node to form a list topology.

Type int

left
Holds the RelayId of the left neighbor Relay connection.

Type RelayId

right
Holds the RelayId of the right neighbor Relay connection.

Type RelayId

26 Chapter 1. RelayModel

RelayModel

check_in_original_variables(relay_id: RelayModel.RelayId.RelayId)
Overrides the method from the node class.

It checks if the given RelayId is present in the left or right neighbor variable.

Parameters relay_id (RelayId) – Defines the RelayId that should be checked.

Returns True if the given RelayId is in one of the variables, False otherwise.

Return type bool

get_relays_from_original_variables()
Overrides the method from the node class.

It forms a list with the left and right neighbor and returns it.

Returns A list containing the left and right neighbor RelayIds. Or an empty list if none is set at
the moment.

Return type list

property left
Handles the left neighbor attribute.

When setting the left neighbor it only accepts None or a RelayId as a value. When setting the neighbor the
Relay gets validated after setting.

linearize(v: RelayModel.RelayId.RelayId)
Impelements the linearize method from the BuildList protocol.

For further information see the thesis of this module.

Parameters v (RelayId) – The connection that should be linearized.

original_timeout()
Overrides the method from the node class to implement a BuildList protocol.

The method corrects left and right neighbors and introduces itself to them. For further information see the
thesis of this module.

remove_from_original_variables(relay_id: RelayModel.RelayId.RelayId)
Overrides the method from the node class.

It removes the given RelayId from the left or right neighbor if they are set to this RelayId.

Parameters relay_id (RelayId) – The RelayId that should be deleted from the variables.

reversal_of_relay(relay_id: RelayModel.RelayId.RelayId)
Overrides the method from the node class.

The reversal of a relay is given by sending a linearize action to the given relay with the in_ref as parameter.

Parameters relay_id (RelayId) – Defines the Relay connection that should be reversed.

property right
Handles the right neighbor attribute.

When setting the right neighbor it only accepts None or a RelayId as a value. When setting the neighbor
the Relay gets validated after setting.

send_analyse_state()
Overrides method from the node class.

Creates a SortedListNodeState with all information needed and sends it to the StateMonitor.

Returns Returns the system state. True if system is valid, False otherwise.

1.1. RelayModel package 27

RelayModel

Return type bool

class RelayModel.SortedListNode.SortedListNodeState(node_id, left, right, relays, running, leaving)
Bases: object

Holds all information needed to pass a state of the SortedListNode.

This class is needed to analyse a system of sorted list nodes. It gets send to the StateMonitor while simulating.

node_id
Holds the node id of the node.

Type int

left
Holds the relay which defines the connection of the left neighbor.

Type StateRelay

right
Holds the relay which defines the connection of the right neighbor.

Type StateRelay

relays
Holds a list of StateRelays which containing relays that are present in the underlying RelayLayer.

Type list

running
Holds the running status of the node.

Type bool

leaving
Holds the leaving status of the node.

Type bool

class RelayModel.SortedListNode.StateRelay(relay)
Bases: object

Holds every information needed to analyse Relays.

This class is used to send Relay information to the StateMonitor. It should only be used in a State object.

relay_id
Holds the RelayId of the Relay which information should be stored.

Type RelayId

alive
Holds the alive state of the Relay.

Type bool

sink_rid
Holds the rid of the sink relay of the relay connection.

Type RelayLayerId

direct
Holds the direct information of the Relay.

Type bool

28 Chapter 1. RelayModel

RelayModel

1.1.13 RelayModel.StateMonitor module

class RelayModel.StateMonitor.StateMonitor(node_count)
The StateMonitor watches the state of a simulated system, checks for validation and monitors timeouts.

The StateMonitor is a class that can watch a system from outside and monitors the simulated nodes. It stores the
states of the nodes and analyse it until the system gets valid. It also stores the timeout counts of each node so we
can later analyse it. The in depth description of the StateMonitor is given in the thesis of this framework.

node_count
Stores the amount of nodes present in the system.

Type int

node_timeout_count
Stores the timeout counts of each node in a dict. The key of the dict is the node id and the value is a integer
counting the timeouts executed by this node.

Type dict

nodes
Stores the node states of each node in a dict. The key of this dict is the node id of the node and the value is
a node state storing the state of this specific node.

Type dict

valid
Stores the state of the system. False if not valid. True if system is valid.

Type bool

notify_nodes
Stores a set of node ids to check if a node should be notified after system got valid. The StateMonitor waits
after the system got valid until every node got notified about this.

Type set

logger
Holds the logger object for this class.

Type logging.Logger

listening_thread
Holds the Thread for listening for node states.

Type threading.Thread

analyse_thread
Holds the Thread for analysing the system.

Type threading.Thread

stop()
Stops the StateMonitor.

The StateMonitor gets stopped by this function by setting the internal running flag to False. After that all
threads gets stopped.

1.1. RelayModel package 29

RelayModel

1.1.14 RelayModel.Validation module

RelayModel.Validation.BFS(visited_nodes, adjacency)
Breadth first search algorithm.

The function takes a list of visiting information where the index defines a node and the value defines the visited
information. Zero stands for not visited. One stands for queued but not visited yet. Two stands for visited. It also
takes a adjacency matrix to go along edges. The method writes the results directly in the visited nodes variable
given in the parameters.

Parameters

• visited_nodes (list) – A list of visited information for each node.

• adjacency (list) – A adjacency matrix.

RelayModel.Validation.check_sorted_list_node_is_valid(node:
RelayModel.SortedListNode.SortedListNode,
node_ids, should_be_connected=False)

Checks if a given SortedListNode is valid.

The function checks if the given Node is valid. That means they have to be connected if they are staying and
should not be connected to other nodes if they are leaving. Furthermore it checks if the connections are direct
and if the connections are to the right node.

Parameters

• node (SortedListNode) – The node that should be checked as a SortedListNode object.

• node_ids (list) – Defines a list of all staying node ids in the system. This list should be
sorted.

• should_be_connected (bool, optional) – Defines if a node should be connected or
not. By default this is set to False. This should be set to True if a staying node is checked
and False otherwise.

Returns True if the given node is a valid SortedListNode, False otherwise.

Return type bool

RelayModel.Validation.check_weak_connectivity(nodes)
Checks a system of nodes for weakly connectivity.

The function takes a dict of nodes where the key is the node id and the value is the node itself. Then it creates a
adjacency matrix with the relays in the node and checks the weakly connectivity with the BFS function.

Parameters nodes (dict) – The nodes dict where the key is the node id and the value the node
object.

Returns True if the nodes are weakly connected. False otherwise.

Return type bool

RelayModel.Validation.system_has_valid_state(nodes, logger)
Checks a system of nodes if the system is in a valid state.

The method takes a dictionary of nodes. Every value of the dict should be a Node object. It checks every node
if they are stopped when they are leaving and if they are running if they stay. Also it checks if every node is a
valid sorted list node with the check_sorted_list_node_is_valid function.

If one condition fails it returns False. Only if all nodes are valid it checks if all staying nodes form a weakly
connected graph. If that is given it returns True otherwise False.

To log the validation process a logger can be passed to the function.

30 Chapter 1. RelayModel

RelayModel

Parameters

• nodes (dict) – The node dict where every value is a Node object.

• logger (logging.Logger) – A logger object to log some results of the validation process.

Returns True if system of nodes is valid False otherwise.

Return type bool

1.1. RelayModel package 31

RelayModel

32 Chapter 1. RelayModel

PYTHON MODULE INDEX

r
RelayModel, 1
RelayModel.Communication, 1
RelayModel.ConceptChange, 6
RelayModel.GraphGeneration, 6
RelayModel.KeyGeneration, 7
RelayModel.LinkLayer, 8
RelayModel.ModuleConfig, 10
RelayModel.Node, 12
RelayModel.Relay, 16
RelayModel.RelayId, 19
RelayModel.RelayLayer, 20
RelayModel.RelayLogging, 26
RelayModel.SortedListNode, 26
RelayModel.StateMonitor, 29
RelayModel.Validation, 30

33

RelayModel

34 Python Module Index

INDEX

A
a_in (RelayModel.Node.Node attribute), 13
a_out (RelayModel.Node.Node attribute), 13
Action (class in RelayModel.Communication), 1
action (RelayModel.Communication.LayerMessage at-

tribute), 3
action (RelayModel.Communication.Message at-

tribute), 3
action_type (RelayModel.Communication.Action at-

tribute), 1
active (RelayModel.RelayLayer.RelayLayer attribute),

21
add_in_reference() (RelayModel.Relay.Relay

method), 17
add_key() (RelayModel.Relay.OutReference method),

16
add_relay_to_layer() (Relay-

Model.RelayLayer.RelayLayer method),
21

alive (RelayModel.Relay.Relay attribute), 17
alive (RelayModel.SortedListNode.StateRelay at-

tribute), 28
analyse_mode (RelayModel.Node.Node attribute), 13
analyse_thread (Relay-

Model.StateMonitor.StateMonitor attribute),
29

ask_to_reverse() (RelayModel.Node.Node method),
13

ask_to_reverse_anchor() (RelayModel.Node.Node
method), 13

B
BFS() (in module RelayModel.Validation), 30
Blueprint (class in RelayModel.GraphGeneration), 6
buffer (RelayModel.Node.Node attribute), 12
buffer_put_actions (Relay-

Model.RelayLayer.RelayLayer attribute),
21

buffer_put_thread (Relay-
Model.RelayLayer.RelayLayer attribute),
21

C
calculate_windows() (in module Relay-

Model.ConceptChange), 6
call_method() (RelayModel.Node.Node method), 13
calling_lock (RelayModel.RelayLayer.RelayLayer at-

tribute), 21
CHANGE_ALPHA (in module RelayModel.ModuleConfig),

10
check_dos_attack() (Relay-

Model.RelayLayer.RelayLayer method),
22

check_has_key_as_parameter() (Relay-
Model.Communication.Action method), 1

check_in_original_variables() (Relay-
Model.Node.Node method), 13

check_in_original_variables() (Relay-
Model.SortedListNode.SortedListNode
method), 26

check_key_in_relay_buffer() (Relay-
Model.LinkLayer.LinkLayer method), 8

check_key_origin() (in module Relay-
Model.KeyGeneration), 7

check_relay_exists() (Relay-
Model.RelayLayer.RelayLayer method),
22

check_sorted_list_node_is_valid() (in module
RelayModel.Validation), 30

check_valid() (RelayModel.Relay.InReference
method), 16

check_weak_connectivity() (in module Relay-
Model.Validation), 30

clear_in_relays() (RelayModel.Relay.Relay method),
18

CONSIDER_AS_CLOSED (in module Relay-
Model.ModuleConfig), 10

control_keys (Relay-
Model.Communication.ProbeAction attribute),
4

control_keys (Relay-
Model.Communication.ProbeAction property),
4

35

RelayModel

D
D (RelayModel.Node.Node attribute), 12
delete() (RelayModel.RelayLayer.RelayLayer method),

22
direct (RelayModel.SortedListNode.StateRelay at-

tribute), 28
direction (RelayModel.GraphGeneration.OutBlueprint

attribute), 7
DOS_DETECTION_ACTIVATED (in module Relay-

Model.ModuleConfig), 10
dos_threshold (RelayModel.Relay.Relay attribute), 17

F
FailureMessage (class in Relay-

Model.Communication), 1

G
generate_key() (in module Relay-

Model.KeyGeneration), 7
generate_prefix() (in module Relay-

Model.KeyGeneration), 7
get_key_for_layer() (Relay-

Model.RelayLayer.RelayLayer method),
22

get_level() (RelayModel.RelayLayer.RelayLayer
method), 22

get_logger() (in module RelayModel.RelayLogging),
26

get_new_relay_object() (Relay-
Model.RelayLayer.RelayLayer method),
22

get_relay_by_relay_id() (Relay-
Model.RelayLayer.RelayLayer method),
22

get_relays() (RelayModel.RelayLayer.RelayLayer
method), 22

get_relays_from_original_variables() (Relay-
Model.Node.Node method), 14

get_relays_from_original_variables() (Re-
layModel.SortedListNode.SortedListNode
method), 27

get_sink_node_id() (Relay-
Model.RelayLayer.RelayLayer method),
23

get_valid_keys() (RelayModel.Relay.Relay method),
18

get_validated_relays() (Relay-
Model.RelayLayer.RelayLayer method),
23

H
handle_in_relay_closed() (Relay-

Model.RelayLayer.RelayLayer method),
23

handle_not_authorized() (Relay-
Model.RelayLayer.RelayLayer method),
23

handle_out_relay_closed() (Relay-
Model.RelayLayer.RelayLayer method),
23

handle_ping() (RelayModel.RelayLayer.RelayLayer
method), 23

handle_probe_fail() (Relay-
Model.RelayLayer.RelayLayer method),
24

handle_transmit() (Relay-
Model.RelayLayer.RelayLayer method),
24

has_incoming() (RelayModel.Relay.Relay method), 18
has_incoming() (RelayModel.RelayLayer.RelayLayer

method), 24
has_key_in_in_ref() (RelayModel.Relay.Relay

method), 18
Header (class in RelayModel.Communication), 2
header (RelayModel.Communication.Message at-

tribute), 3

I
in_blueprints (Relay-

Model.GraphGeneration.Blueprint attribute),
6

in_ref (RelayModel.Node.Node attribute), 12
in_relays (RelayModel.Relay.Relay attribute), 17
InBlueprint (class in RelayModel.GraphGeneration), 6
InReference (class in RelayModel.Relay), 16
InRelayClosedAction (class in Relay-

Model.Communication), 2
ip (RelayModel.RelayId.RelayLayerId attribute), 19
is_buffer_empty() (RelayModel.LinkLayer.LinkLayer

method), 8
is_dead() (RelayModel.Relay.Relay method), 18
is_dead() (RelayModel.RelayLayer.RelayLayer

method), 24
is_direct() (RelayModel.Relay.Relay method), 18
is_direct() (RelayModel.RelayLayer.RelayLayer

method), 24
is_sink() (RelayModel.Relay.Relay method), 18
is_sink() (RelayModel.RelayLayer.RelayLayer

method), 24

K
key (RelayModel.Communication.Ping attribute), 4
key (RelayModel.Communication.ProbeFailAction

attribute), 5
key (RelayModel.Communication.ProbeFailAction prop-

erty), 5
key (RelayModel.Communication.RelayParameter

attribute), 5

36 Index

RelayModel

key (RelayModel.GraphGeneration.InBlueprint at-
tribute), 6

key (RelayModel.GraphGeneration.OutBlueprint at-
tribute), 6

key (RelayModel.Relay.InReference attribute), 16
key (RelayModel.Relay.InReference property), 16
key_sequence (Relay-

Model.Communication.ProbeAction attribute),
4

key_sequence (Relay-
Model.Communication.ProbeAction property),
4

key_sequence (Relay-
Model.Communication.ProbeFailAction
attribute), 5

key_sequence (Relay-
Model.Communication.ProbeFailAction
property), 5

keys (RelayModel.Communication.Header attribute), 2
keys (RelayModel.Communication.InRelayClosedAction

attribute), 2
keys (RelayModel.Communication.InRelayClosedAction

property), 2
keys (RelayModel.Communication.NotAuthorizedAction

attribute), 3
keys (RelayModel.Communication.NotAuthorizedAction

property), 3
keys (RelayModel.Relay.OutReference attribute), 16
keys (RelayModel.Relay.OutReference property), 17

L
last_id (RelayModel.RelayLayer.RelayLayer attribute),

20
layer_id (RelayModel.Communication.LayerMessage

attribute), 2
layer_id (RelayModel.RelayId.RelayId attribute), 19
LayerMessage (class in RelayModel.Communication), 2
leaving (RelayModel.Node.Node attribute), 12
leaving (RelayModel.SortedListNode.SortedListNodeState

attribute), 28
left (RelayModel.SortedListNode.SortedListNode

attribute), 26
left (RelayModel.SortedListNode.SortedListNode prop-

erty), 27
left (RelayModel.SortedListNode.SortedListNodeState

attribute), 28
level (RelayModel.Communication.Ping attribute), 4
level (RelayModel.Communication.RelayParameter at-

tribute), 5
level (RelayModel.Relay.Relay attribute), 17
linearize() (RelayModel.SortedListNode.SortedListNode

method), 27
link_layer_buffer (Relay-

Model.RelayLayer.RelayLayer attribute),

20
link_layer_call_pipe (Relay-

Model.RelayLayer.RelayLayer attribute),
20

link_layer_process (Relay-
Model.RelayLayer.RelayLayer attribute),
20

LinkLayer (class in RelayModel.LinkLayer), 8
listening_thread (Relay-

Model.StateMonitor.StateMonitor attribute),
29

logger (RelayModel.Node.Node attribute), 12
logger (RelayModel.RelayLayer.RelayLayer attribute),

21
logger (RelayModel.StateMonitor.StateMonitor at-

tribute), 29

M
make_weakly_connected_sorted_list() (in module

RelayModel.GraphGeneration), 7
merge() (RelayModel.RelayLayer.RelayLayer method),

24
Message (class in RelayModel.Communication), 3
message (RelayModel.Communication.TransmitMessage

attribute), 5
message_buffer (RelayModel.RelayLayer.RelayLayer

attribute), 20
message_handling_thread (Relay-

Model.RelayLayer.RelayLayer attribute),
21

message_thread (RelayModel.Node.Node attribute), 12
module

RelayModel, 1
RelayModel.Communication, 1
RelayModel.ConceptChange, 6
RelayModel.GraphGeneration, 6
RelayModel.KeyGeneration, 7
RelayModel.LinkLayer, 8
RelayModel.ModuleConfig, 10
RelayModel.Node, 12
RelayModel.Relay, 16
RelayModel.RelayId, 19
RelayModel.RelayLayer, 20
RelayModel.RelayLogging, 26
RelayModel.SortedListNode, 26
RelayModel.StateMonitor, 29
RelayModel.Validation, 30

monitor_timeout_transmit_rate() (Relay-
Model.RelayLayer.RelayLayer method),
24

monitor_transmit() (Relay-
Model.RelayLayer.RelayLayer method),
25

Index 37

RelayModel

N
N (RelayModel.Node.Node attribute), 12
new_relay() (RelayModel.RelayLayer.RelayLayer

method), 25
NO_MONITOR_ACTIONS (in module Relay-

Model.ModuleConfig), 11
Node (class in RelayModel.Node), 12
node_count (RelayModel.StateMonitor.StateMonitor at-

tribute), 29
node_id (RelayModel.RelayId.RelayLayerId attribute),

20
node_id (RelayModel.RelayId.RelayLayerId property),

20
node_id (RelayModel.SortedListNode.SortedListNode

attribute), 26
node_id (RelayModel.SortedListNode.SortedListNodeState

attribute), 28
node_timeout_count (Relay-

Model.StateMonitor.StateMonitor attribute),
29

NODE_TIMEOUT_PERIOD (in module Relay-
Model.ModuleConfig), 10

nodes (RelayModel.StateMonitor.StateMonitor at-
tribute), 29

NotAuthorizedAction (class in Relay-
Model.Communication), 3

notify_anchor() (RelayModel.Node.Node method), 14
notify_nodes (RelayModel.StateMonitor.StateMonitor

attribute), 29

O
original_timeout() (RelayModel.Node.Node

method), 14
original_timeout() (Relay-

Model.SortedListNode.SortedListNode
method), 27

out_blueprints (Relay-
Model.GraphGeneration.Blueprint attribute),
6

out_id (RelayModel.Communication.Header attribute),
2

out_id (RelayModel.Communication.NotAuthorizedAction
attribute), 3

out_id (RelayModel.Communication.NotAuthorizedAction
property), 3

out_id (RelayModel.GraphGeneration.OutBlueprint at-
tribute), 7

out_id (RelayModel.Relay.OutReference attribute), 16
out_id (RelayModel.Relay.OutReference property), 17
out_relay (RelayModel.Relay.Relay attribute), 17
OutBlueprint (class in RelayModel.GraphGeneration),

6
OutReference (class in RelayModel.Relay), 16

OutRelayClosedAction (class in Relay-
Model.Communication), 3

P
parameters (RelayModel.Communication.Action

attribute), 1
Ping (class in RelayModel.Communication), 4
PingAction (class in RelayModel.Communication), 4
pings (RelayModel.Communication.PingAction at-

tribute), 4
pings (RelayModel.Communication.PingAction prop-

erty), 4
POLL_TIMEOUT (in module RelayModel.ModuleConfig),

11
POLL_TRIES (in module RelayModel.ModuleConfig), 11
port (RelayModel.RelayId.RelayLayerId attribute), 20
ProbeAction (class in RelayModel.Communication), 4
ProbeFailAction (class in Relay-

Model.Communication), 5

R
receiving_relay (RelayModel.Communication.Action

attribute), 1
register_relay_layer() (Relay-

Model.LinkLayer.LinkLayer method), 8
Relay (class in RelayModel.Relay), 17
relay (RelayModel.Relay.InReference attribute), 16
relay (RelayModel.Relay.InReference property), 16
relay_id (RelayModel.Communication.InRelayClosedAction

attribute), 2
relay_id (RelayModel.Communication.InRelayClosedAction

property), 2
relay_id (RelayModel.Communication.OutRelayClosedAction

attribute), 3
relay_id (RelayModel.Communication.OutRelayClosedAction

property), 3
relay_id (RelayModel.Communication.Ping attribute),

4
relay_id (RelayModel.Communication.RelayParameter

attribute), 5
relay_id (RelayModel.Relay.Relay attribute), 17
relay_id (RelayModel.RelayId.RelayId attribute), 19
relay_id (RelayModel.SortedListNode.StateRelay

attribute), 28
relay_layer (RelayModel.Node.Node attribute), 12
RELAY_LAYER_TIMEOUT_PERIOD (in module Relay-

Model.ModuleConfig), 11
relay_list_to_string() (in module Relay-

Model.RelayLogging), 26
RELAY_LOG_LEVEL (in module Relay-

Model.ModuleConfig), 11
relay_windows (RelayModel.RelayLayer.RelayLayer

attribute), 21
RelayId (class in RelayModel.RelayId), 19

38 Index

RelayModel

RelayLayer (class in RelayModel.RelayLayer), 20
RelayLayerId (class in RelayModel.RelayId), 19
RelayModel

module, 1
RelayModel.Communication
module, 1

RelayModel.ConceptChange
module, 6

RelayModel.GraphGeneration
module, 6

RelayModel.KeyGeneration
module, 7

RelayModel.LinkLayer
module, 8

RelayModel.ModuleConfig
module, 10

RelayModel.Node
module, 12

RelayModel.Relay
module, 16

RelayModel.RelayId
module, 19

RelayModel.RelayLayer
module, 20

RelayModel.RelayLogging
module, 26

RelayModel.SortedListNode
module, 26

RelayModel.StateMonitor
module, 29

RelayModel.Validation
module, 30

RelayParameter (class in Relay-
Model.Communication), 5

relays (RelayModel.RelayLayer.RelayLayer attribute),
20

relays (RelayModel.SortedListNode.SortedListNodeState
attribute), 28

remove_from_original_variables() (Relay-
Model.Node.Node method), 14

remove_from_original_variables() (Relay-
Model.SortedListNode.SortedListNode
method), 27

remove_in_reference() (RelayModel.Relay.Relay
method), 18

remove_in_reference_by_key_and_rid() (Relay-
Model.Relay.Relay method), 18

remove_in_reference_by_relay() (Relay-
Model.Relay.Relay method), 19

remove_in_reference_by_relay_and_key() (Re-
layModel.Relay.Relay method), 19

remove_in_reference_by_rid() (Relay-
Model.Relay.Relay method), 19

remove_key() (RelayModel.Relay.OutReference
method), 17

replace_action() (RelayModel.Node.Node method),
14

replace_relay_in_references() (Relay-
Model.Relay.Relay method), 19

RESULTS_FOLDER (in module Relay-
Model.ModuleConfig), 11

reversal_of_relay() (RelayModel.Node.Node
method), 14

reversal_of_relay() (Relay-
Model.SortedListNode.SortedListNode
method), 27

reverse() (RelayModel.Node.Node method), 15
rid (RelayModel.Communication.RelayParameter

attribute), 5
rid (RelayModel.GraphGeneration.InBlueprint at-

tribute), 6
rid (RelayModel.Relay.InReference attribute), 16
rid (RelayModel.Relay.InReference property), 16
RID (RelayModel.RelayLayer.RelayLayer attribute), 20
right (RelayModel.SortedListNode.SortedListNode at-

tribute), 26
right (RelayModel.SortedListNode.SortedListNode

property), 27
right (RelayModel.SortedListNode.SortedListNodeState

attribute), 28
running (RelayModel.LinkLayer.LinkLayer attribute), 8
running (RelayModel.Node.Node attribute), 12
running (RelayModel.RelayLayer.RelayLayer attribute),

21
running (RelayModel.SortedListNode.SortedListNodeState

attribute), 28

S
same_target() (RelayModel.Relay.Relay method), 19
same_target() (RelayModel.RelayLayer.RelayLayer

method), 25
send() (RelayModel.RelayLayer.RelayLayer method), 25
send_analyse_state() (RelayModel.Node.Node

method), 15
send_analyse_state() (Relay-

Model.SortedListNode.SortedListNode
method), 27

send_message() (in module RelayModel.LinkLayer), 9
send_state_to_monitor() (RelayModel.Node.Node

method), 15
sender_rid (RelayModel.Communication.Header

attribute), 2
sender_rid (RelayModel.Communication.InRelayClosedAction

attribute), 2
sender_rid (RelayModel.Communication.InRelayClosedAction

property), 2

Index 39

RelayModel

shutdown() (RelayModel.LinkLayer.LinkLayer method),
8

shutdown() (RelayModel.Node.Node method), 15
shutdown() (RelayModel.RelayLayer.RelayLayer

method), 25
sink_rid (RelayModel.Communication.Ping attribute),

4
sink_rid (RelayModel.GraphGeneration.OutBlueprint

attribute), 6
sink_rid (RelayModel.Relay.Relay attribute), 17
sink_rid (RelayModel.SortedListNode.StateRelay

attribute), 28
SortedListNode (class in RelayModel.SortedListNode),

26
SortedListNodeState (class in Relay-

Model.SortedListNode), 28
start() (RelayModel.Node.Node method), 15
start_layer_buffer_watch() (in module Relay-

Model.LinkLayer), 9
start_link_layer() (in module Relay-

Model.LinkLayer), 9
start_listening() (in module Relay-

Model.LinkLayer), 10
STATE_MONITOR_ADDRESS (in module Relay-

Model.ModuleConfig), 11
STATE_MONITOR_PORT (in module Relay-

Model.ModuleConfig), 11
StateMonitor (class in RelayModel.StateMonitor), 29
StateRelay (class in RelayModel.SortedListNode), 28
stop() (RelayModel.Node.Node method), 15
stop() (RelayModel.RelayLayer.RelayLayer method), 25
stop() (RelayModel.StateMonitor.StateMonitor

method), 29
stop_relay_watch() (Relay-

Model.LinkLayer.LinkLayer method), 9
stopped (RelayModel.LinkLayer.LinkLayer attribute), 8
SuccessMessage (class in Relay-

Model.Communication), 5
system_has_valid_state() (in module Relay-

Model.Validation), 30

T
timeout() (RelayModel.Node.Node method), 15
timeout() (RelayModel.RelayLayer.RelayLayer

method), 25
timeout_period (RelayModel.Node.Node attribute), 12
timeout_thread (RelayModel.Node.Node attribute), 12
timeout_thread (RelayModel.RelayLayer.RelayLayer

attribute), 21
transmit_count (RelayModel.RelayLayer.RelayLayer

attribute), 21
TransmitMessage (class in Relay-

Model.Communication), 5

V
valid (RelayModel.StateMonitor.StateMonitor at-

tribute), 29
validate_relay() (Relay-

Model.RelayLayer.RelayLayer method),
25

validated (RelayModel.Relay.Relay attribute), 17

W
WINDOW_SIZE (in module RelayModel.ModuleConfig), 11

40 Index

	RelayModel
	RelayModel package
	RelayModel.Communication module
	RelayModel.ConceptChange module
	RelayModel.GraphGeneration module
	RelayModel.KeyGeneration module
	RelayModel.LinkLayer module
	RelayModel.ModuleConfig module
	RelayModel.Node module
	RelayModel.Relay module
	RelayModel.RelayId module
	RelayModel.RelayLayer module
	RelayModel.RelayLogging module
	RelayModel.SortedListNode module
	RelayModel.StateMonitor module
	RelayModel.Validation module

	Python Module Index
	Index

