Commit a4699fbf authored by Sascha Brauer's avatar Sascha Brauer
Browse files

Merge branch 'thesis-example' into 'master'

Added example content to thesis template

See merge request !2
parents bd58f4b4 d436cf30
\def\Title{Titel} % Hier Titel eintragen / Enter your title here
\def\Author{Autor} % Hier Namen eintrage / Enter your name here
\def\Title{Title} % Hier Titel eintragen / Enter your title here
\def\Author{Author} % Hier Namen eintrage / Enter your name here
\def\Degree{Bachelor} % Master
\def\SecondExaminer{???} % Zweitgutachter / Second Examiner
% Math Defs
%Some typical commands (remove or change if they're not to your liking)
\newcommand*{\bfrac}[2]{\genfrac{\lbrace}{\rbrace}{0pt}{}{#1}{#2}} %Fraction withour bar
%Example defs for the example.tex file
% Add additional style definitions as required
% Graphical Libs
%Some useful default libs
\usepackage{hyperref} %comment out if this causes trouble. Otherwise, this makes references in the document clickable.
\usepackage{todonotes} %allows for the \todo{...} and \todo[inline]{...} commands
% Add additional packages as required
\chapter{Basic definitions and notation}
\todo[inline]{This file contains example content. It is meant to get you started.}
\todo[inline]{You can remove this example content from the thesis by removing the input statement for example.tex from the thesis\_main.tex file.}
\section{Basic notation}
Throughout this thesis, we will use the following notation:
\item $\N := \{1,2,\dots\}$ denotes the set of natural numbers (excluding zero). %see config/defs.tex file for the definition of the $\N$ macro.
\item For a bit string $s = (s_0,\dots,s_{n-1}) \in \{0,1\}^n$ and $0\leq i \leq j < n$, we write $s[i:j] := (s_i, \dots, s_{j-1})$ to denote substrings.
In particular, $s[i:i]$ is the empty string $\epsilon$ and $s[0:n]$ is the complete string $s$.
\item For two vectors $\vec{u},\vec{v}\in \{0,1\}^n$, with $\vec{u}=(u_1,\dots,u_n), \vec{v} = (v_1,\dots,v_n)$, the expression $\vec{u}\odot\vec{v}$ denotes the Hadamard product. $(\vec{u}\odot\vec{v})_i = u_i\cdot v_i$.
\section{Gobbling schemes}
\todo[inline]{Don't try to make sense of this. It's just a syntax example with no real connection to anything.}
Gobbling schemes \todo{This is an example for a todonote. They're super useful!} are useful whenever the the Hadamard product of two random bit vectors needs to be hidden from polynomially bounded adversaries.
They are an important building block for twaddle signatures, which we investigate in this thesis.
\subsection{Syntax definition}
Our definition for gobbling schemes is taken from \cite{testref} \todo[fancyline]{note the citation} with minor syntactic changes.
See Section~\ref{sec:basicnotation} \todo[fancyline]{note the reference} for basic notation.
\begin{definition}[Gobbling scheme]
A \emph{gobbling scheme} $\Pi$ consists of the following three probabilistic polynomial-time algorithms:
\item $\pk \leftarrow \setup(1^\lambda)$ \todo{note that $\pk$ and $\setup$ are macros defined in defs.tex.}
on input a unary security parameter $\lambda$, $\setup$ generates a public key $\pk$.
\item $\vec{q} \leftarrow \gobble(\pk, \vec{u}, \vec{v})$ generates a \emph{gobbled} vector $\vec{q}\in\{0,1\}^n$ given a key $\pk$ and two vectors $\vec{u},\vec{v}\in\{0,1\}^n$.
\item $\vec{z} \leftarrow \ungobble(\pk, \vec{q})$ given a gobbled vector $\vec{q}\in\{0,1\}^n$ outputs an ungobbled vector $\vec{z}\in\{0,1\}^{2n}$.
$\Pi$ is \emph{correct} if there exists a negligible function $\mu$ such that for all $\lambda,n\in\N$,
1-\mu(\lambda) \leq \Pr[\vec{z} = \vec{u}\odot\vec{v} \mid & k\leftarrow \setup(1^\lambda); \vec{u},\vec{v}\leftarrow \{0,1\}^n; \\
& \vec{z} \leftarrow \ungobble(k, \gobble(k, \vec{u},\vec{v}))]
\noindent Intuitively, correctness guarantees \dots
\subsection{Security definition}
......@@ -27,7 +27,7 @@
% Input your files here!
% You probably want to remove this for the final version
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment